Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Metab ; 83: 101925, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38537884

RESUMEN

OBJECTIVES: Estrogen-related-receptor α (ERRα) plays a critical role in the transcriptional regulation of cellular bioenergetics and metabolism, and perturbations in its activity have been associated with metabolic diseases. While several coactivators and corepressors of ERRα have been identified to date, a knowledge gap remains in understanding the extent to which ERRα cooperates with coregulators in the control of gene expression. Herein, we mapped the primary chromatin-bound ERRα interactome in mouse liver. METHODS: RIME (Rapid Immuno-precipitation Mass spectrometry of Endogenous proteins) analysis using mouse liver samples from two circadian time points was used to catalog ERRα-interacting proteins on chromatin. The genomic crosstalk between ERRα and its identified cofactors in the transcriptional control of precise gene programs was explored through cross-examination of genome-wide binding profiles from chromatin immunoprecipitation-sequencing (ChIP-seq) studies. The dynamic interplay between ERRα and its newly uncovered cofactor Host cell factor C1 (HCFC1) was further investigated by loss-of-function studies in hepatocytes. RESULTS: Characterization of the hepatic ERRα chromatin interactome led to the identification of 48 transcriptional interactors of which 42 were previously unknown including HCFC1. Interrogation of available ChIP-seq binding profiles highlighted oxidative phosphorylation (OXPHOS) under the control of a complex regulatory network between ERRα and multiple cofactors. While ERRα and HCFC1 were found to bind to a large set of common genes, only a small fraction showed their colocalization, found predominately near the transcriptional start sites of genes particularly enriched for components of the mitochondrial respiratory chain. Knockdown studies demonstrated inverse regulatory actions of ERRα and HCFC1 on OXPHOS gene expression ultimately dictating the impact of their loss-of-function on mitochondrial respiration. CONCLUSIONS: Our work unveils a repertoire of previously unknown transcriptional partners of ERRα comprised of chromatin modifiers and transcription factors thus advancing our knowledge of how ERRα regulates metabolic transcriptional programs.


Asunto(s)
Cromatina , Receptor Relacionado con Estrógeno ERRalfa , Hígado , Receptores de Estrógenos , Animales , Ratones , Cromatina/metabolismo , Cromatina/genética , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/genética , Hígado/metabolismo , Masculino , Ratones Endogámicos C57BL , Regulación de la Expresión Génica , Hepatocitos/metabolismo
2.
FEBS Open Bio ; 12(5): 959-982, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35302710

RESUMEN

Mutations in genes encoding cytochrome c oxidase (mitochondrial complex IV) subunits and assembly factors [e.g., synthesis of cytochrome c oxidase 2 (SCO2)] are linked to severe metabolic syndromes. Notwithstanding that SCO2 is under transcriptional control of tumor suppressor p53, the role of mitochondrial complex IV dysfunction in cancer metabolism remains obscure. Herein, we demonstrate that the loss of SCO2 in HCT116 colorectal cancer cells leads to significant metabolic and signaling perturbations. Specifically, abrogation of SCO2 increased NAD+ regenerating reactions and decreased glucose oxidation through citric acid cycle while enhancing pyruvate carboxylation. This was accompanied by a reduction in amino acid levels and the accumulation of lipid droplets. In addition, SCO2 loss resulted in hyperactivation of the insulin-like growth factor 1 receptor (IGF1R)/AKT axis with paradoxical downregulation of mTOR signaling, which was accompanied by increased AMP-activated kinase activity. Accordingly, abrogation of SCO2 expression appears to increase the sensitivity of cells to IGF1R and AKT, but not mTOR inhibitors. Finally, the loss of SCO2 was associated with reduced proliferation and enhanced migration of HCT116 cells. Collectively, herein we describe potential adaptive signaling and metabolic perturbations triggered by mitochondrial complex IV dysfunction.


Asunto(s)
Complejo IV de Transporte de Electrones , Chaperonas Moleculares , Complejo IV de Transporte de Electrones/genética , Complejo IV de Transporte de Electrones/metabolismo , Células HCT116 , Humanos , Mitocondrias/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...