Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 8570, 2024 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-38609422

RESUMEN

Glioblastoma is one of the most common and aggressive brain tumors and has seen few improvements in patient outcomes. Inter-tumor heterogeneity between tumors of different patients as well as intra-tumor heterogeneity of cells within the same tumor challenge the development of effective drugs. MiRNAs play an essential role throughout the developing brain and regulate many key genes involved in oncogenesis, yet their role in driving many of the processes underlying tumor heterogeneity remains unclear. In this study, we highlight miRNAs from the Dlk1-Dio3 and miR-224/452 clusters which may be expressed cell autonomously and have expression that is associated with cell state genes in glioblastoma, most prominently in neural progenitor-like and mesenchymal-like states respectively. These findings implicate these miRNA clusters as potential regulators of glioblastoma intra-tumoral heterogeneity and may serve as valuable biomarkers for cell state identification.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , MicroARNs , Humanos , Encéfalo , Neoplasias Encefálicas/genética , Carcinogénesis , Glioblastoma/genética , MicroARNs/genética
2.
Nucleic Acids Res ; 50(21): e122, 2022 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-36124665

RESUMEN

Tree- and linear-shaped cell differentiation trajectories have been widely observed in developmental biologies and can be also inferred through computational methods from single-cell RNA-sequencing datasets. However, trajectories with complicated topologies such as loops, disparate lineages and bifurcating hierarchy remain difficult to infer accurately. Here, we introduce a density-based trajectory inference method capable of constructing diverse shapes of topological patterns including the most intriguing bifurcations. The novelty of our method is a step to exploit overlapping probability distributions to identify transition states of cells for determining connectability between cell clusters, and another step to infer a stable trajectory through a base-topology guided iterative fitting. Our method precisely re-constructed various benchmark reference trajectories. As a case study to demonstrate practical usefulness, our method was tested on single-cell RNA sequencing profiles of blood cells of SARS-CoV-2-infected patients. We not only re-discovered the linear trajectory bridging the transition from IgM plasmablast cells to developing neutrophils, and also found a previously-undiscovered lineage which can be rigorously supported by differentially expressed gene analysis.


Asunto(s)
COVID-19 , Análisis de la Célula Individual , Humanos , Análisis de la Célula Individual/métodos , SARS-CoV-2 , COVID-19/genética , Diferenciación Celular/genética
3.
Brief Funct Genomics ; 21(5): 387-398, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35848773

RESUMEN

Next-Generation Sequencing has produced incredible amounts of short-reads sequence data for de novo genome assembly over the last decades. For efficient transmission of these huge datasets, high-performance compression algorithms have been intensively studied. As both the de novo assembly and error correction methods utilize the overlaps between reads data, a concern is that the will the sequencing errors bring up negative effects on genome assemblies also affect the compression of the NGS data. This work addresses two problems: how current error correction algorithms can enable the compression algorithms to make the sequence data much more compact, and whether the sequence-modified reads by the error-correction algorithms will lead to quality improvement for de novo contig assembly. As multiple sets of short reads are often produced by a single biomedical project in practice, we propose a graph-based method to reorder the files in the collection of multiple sets and then compress them simultaneously for a further compression improvement after error correction. We use examples to illustrate that accurate error correction algorithms can significantly reduce the number of mismatched nucleotides in the reference-free compression, hence can greatly improve the compression performance. Extensive test on practical collections of multiple short-read sets does confirm that the compression performance on the error-corrected data (with unchanged size) significantly outperforms that on the original data, and that the file reordering idea contributes furthermore. The error correction on the original reads has also resulted in quality improvements of the genome assemblies, sometimes remarkably. However, it is still an open question that how to combine appropriate error correction methods with an assembly algorithm so that the assembly performance can be always significantly improved.


Asunto(s)
Algoritmos , Secuenciación de Nucleótidos de Alto Rendimiento , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Nucleótidos , Análisis de Secuencia de ADN/métodos
4.
PLoS One ; 17(3): e0264717, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35235599

RESUMEN

Non-small cell lung cancer (NSCLC) accounts for the majority (80-85%) of all lung cancers. All current available treatments have limited efficacy. The epidermal growth factor receptor (EGFR) plays a critical role in the development and progression of NSCLC, with high EGFR expression associated with increased cell proliferation and poor prognosis. Thus, interfering with EGFR signaling has been shown to effectively reduce cell proliferation and help in the treatment of NSCLC. We previously demonstrated that the progesterone receptor (PR) contains a polyproline domain (PPD) that directly interacts with Src homology 3 (SH3) domain-containing molecules and expression of PR-PPD peptides inhibits NSCLC cell proliferation. In this study, we investigated whether the introduction of PR-PPD by cell-penetrating peptides (CPPs) could inhibit EGF-induced cell proliferation in NSCLC cells. PR-PPD was attached to a cancer-specific CPP, Buforin2 (BR2), to help deliver the PR-PPD into NSCLC cells. Interestingly, addition of BR2-2xPPD peptides containing two PR-PPD repeats was more effective in inhibiting NSCLC proliferation and significantly reduced EGF-induced phosphorylation of Erk1/2. BR2-2xPPD treatment induced cell cycle arrest by inhibiting the expression of cyclin D1 and CDK2 genes in EGFR-wild type A549 cells. Furthermore, the combination treatment of EGFR-tyrosine kinase inhibitors (TKIs), including Gefitinib or Erlotinib, with BR2-2xPPD peptides further suppressed the growth of NSCLC PC9 cells harboring EGFR mutations as compared to EGFR-TKIs treatment alone. Importantly, BR2-2xPPD peptides mediated growth inhibition in acquired Gefitinib- and Erlotinib- resistant lung adenocarcinoma cells. Our data suggests that PR-PPD is the minimal protein domain sufficient to inhibit NSCLC cell growth and has the potential to be developed as a novel NSCLC therapeutic agent.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Péptidos de Penetración Celular , Neoplasias Pulmonares , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Proliferación Celular , Péptidos de Penetración Celular/farmacología , Péptidos de Penetración Celular/uso terapéutico , Resistencia a Antineoplásicos , Factor de Crecimiento Epidérmico/farmacología , Factor de Crecimiento Epidérmico/uso terapéutico , Receptores ErbB/genética , Clorhidrato de Erlotinib/uso terapéutico , Gefitinib/farmacología , Gefitinib/uso terapéutico , Humanos , Neoplasias Pulmonares/patología , Péptidos , Inhibidores de Proteínas Quinasas/farmacología , Receptores de Progesterona
5.
Sci Rep ; 12(1): 2834, 2022 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-35181712

RESUMEN

MicroRNAs (miRNAs) are non-coding small RNAs which play a critical role in the regulation of gene expression in cells. It is known that miRNAs are often expressed as multiple isoforms, called isomiRs, which may have alternative regulatory functions. Despite the recent development of several single cell small RNA sequencing protocols, these methods have not been leveraged to investigate isomiR expression and regulation to better understand their role on a single cell level. Here we integrate sequencing data from three independent studies and find substantial differences in isomiR composition that suggest that cell autonomous mechanisms may drive isomiR processing. We also find evidence of altered regulatory functions of different classes of isomiRs, when compared to their respective wild-type miRNA, which supports a biological role for many of the isomiRs that are expressed.


Asunto(s)
Regulación de la Expresión Génica/genética , MicroARNs/genética , Isoformas de ARN/genética , Humanos , RNA-Seq , Análisis de Secuencia de ARN , Análisis de la Célula Individual , Secuenciación del Exoma
6.
Nucleic Acids Res ; 49(18): e106, 2021 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-34291293

RESUMEN

Raw sequencing reads of miRNAs contain machine-made substitution errors, or even insertions and deletions (indels). Although the error rate can be low at 0.1%, precise rectification of these errors is critically important because isoform variation analysis at single-base resolution such as novel isomiR discovery, editing events understanding, differential expression analysis, or tissue-specific isoform identification is very sensitive to base positions and copy counts of the reads. Existing error correction methods do not work for miRNA sequencing data attributed to miRNAs' length and per-read-coverage properties distinct from DNA or mRNA sequencing reads. We present a novel lattice structure combining kmers, (k - 1)mers and (k + 1)mers to address this problem. The method is particularly effective for the correction of indel errors. Extensive tests on datasets having known ground truth of errors demonstrate that the method is able to remove almost all of the errors, without introducing any new error, to improve the data quality from every-50-reads containing one error to every-1300-reads containing one error. Studies on experimental miRNA sequencing datasets show that the errors are often rectified at the 5' ends and the seed regions of the reads, and that there are remarkable changes after the correction in miRNA isoform abundance, volume of singleton reads, overall entropy, isomiR families, tissue-specific miRNAs, and rare-miRNA quantities.


Asunto(s)
Biología Computacional/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , MicroARNs/análisis , Análisis de Secuencia de ADN/métodos , Algoritmos , Animales , Bases de Datos Genéticas , Humanos , Salmón/genética
7.
Brief Bioinform ; 22(6)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34111889

RESUMEN

Single-cell sequencing is a biotechnology to sequence one layer of genomic information for individual cells in a tissue sample. For example, single-cell DNA sequencing is to sequence the DNA from every single cell. Increasing in complexity, single-cell multi-omics sequencing, or single-cell multimodal omics sequencing, is to profile in parallel multiple layers of omics information from a single cell. In practice, single-cell multi-omics sequencing actually detects multiple traits such as DNA, RNA, methylation information and/or protein profiles from the same cell for many individuals in a tissue sample. Multi-omics sequencing has been widely applied to systematically unravel interplay mechanisms of key components and pathways in cell. This survey overviews recent developments in single-cell multi-omics sequencing, and their applications to understand complex diseases in particular the COVID-19 pandemic. We also summarize machine learning and bioinformatics techniques used in the analysis of the intercorrelated multilayer heterogeneous data. We observed that variational inference and graph-based learning are popular approaches, and Seurat V3 is a commonly used tool to transfer the missing variables and labels. We also discussed two intensively studied issues relating to data consistency and diversity and commented on currently cared issues surrounding the error correction of data pairs and data imputation methods. The survey is concluded with some open questions and opportunities for this extraordinary field.


Asunto(s)
COVID-19/genética , Pandemias , Proteómica , SARS-CoV-2/genética , Algoritmos , COVID-19/virología , Biología Computacional , Análisis de Datos , Genómica , Humanos , Aprendizaje Automático , SARS-CoV-2/patogenicidad , Análisis de la Célula Individual
8.
BMC Bioinformatics ; 22(Suppl 6): 142, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34078284

RESUMEN

BACKGROUND: Genomic reads from sequencing platforms contain random errors. Global correction algorithms have been developed, aiming to rectify all possible errors in the reads using generic genome-wide patterns. However, the non-uniform sequencing depths hinder the global approach to conduct effective error removal. As some genes may get under-corrected or over-corrected by the global approach, we conduct instance-based error correction for short reads of disease-associated genes or pathways. The paramount requirement is to ensure the relevant reads, instead of the whole genome, are error-free to provide significant benefits for single-nucleotide polymorphism (SNP) or variant calling studies on the specific genes. RESULTS: To rectify possible errors in the short reads of disease-associated genes, our novel idea is to exploit local sequence features and statistics directly related to these genes. Extensive experiments are conducted in comparison with state-of-the-art methods on both simulated and real datasets of lung cancer associated genes (including single-end and paired-end reads). The results demonstrated the superiority of our method with the best performance on precision, recall and gain rate, as well as on sequence assembly results (e.g., N50, the length of contig and contig quality). CONCLUSION: Instance-based strategy makes it possible to explore fine-grained patterns focusing on specific genes, providing high precision error correction and convincing gene sequence assembly. SNP case studies show that errors occurring at some traditional SNP areas can be accurately corrected, providing high precision and sensitivity for investigations on disease-causing point mutations.


Asunto(s)
Genoma , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Genómica , Análisis de Secuencia de ADN
10.
Sci Data ; 8(1): 100, 2021 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-33846359

RESUMEN

Progesterone receptor (PR) isoforms, PRA and PRB, act in a progesterone-independent and dependent manner to differentially modulate the biology of breast cancer cells. Here we show that the differences in PRA and PRB structure facilitate the binding of common and distinct protein interacting partners affecting the downstream signaling events of each PR-isoform. Tet-inducible HA-tagged PRA or HA-tagged PRB constructs were expressed in T47DC42 (PR/ER negative) breast cancer cells. Affinity purification coupled with stable isotope labeling of amino acids in cell culture (SILAC) mass spectrometry technique was performed to comprehensively study PRA and PRB interacting partners in both unliganded and liganded conditions. To validate our findings, we applied both forward and reverse SILAC conditions to effectively minimize experimental errors. These datasets will be useful in investigating PRA- and PRB-specific molecular mechanisms and as a database for subsequent experiments to identify novel PRA and PRB interacting proteins that differentially mediated different biological functions in breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Receptores de Progesterona/metabolismo , Aminoácidos/química , Línea Celular Tumoral , Femenino , Humanos , Marcaje Isotópico/métodos , Espectrometría de Masas/métodos , Receptores de Progesterona/química , Técnicas del Sistema de Dos Híbridos
11.
Food Chem (Oxf) ; 2: 100014, 2021 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-35415639

RESUMEN

Honey adulteration is a problem that effects the global honey industry and specifically, has been discovered in the Australian market. Common methods of adulteration include dilution with sugar syrup substitutes and the mislabelling of the floral and geographic origin(s) of honey. Current authentication tools rely on the molecular variability between different honeys, identifying unique chemical profiles and/or DNA signatures characteristic of a particular honey. Honey is known to contain plant miRNAs derived from its floral source. To explore the composition and variability of honey RNA molecules, this is the first study to catalogue the small RNA content of Australian polyfloral table honey and New Zealand Leptospermum scoparium honey using next generation sequencing. The data shows that in addition to miRNAs, honey contains a variety of small non-coding RNAs including tRNA-derived fragments. Moreover, the honey small RNAs are derived from a range of phylogenetic sources, including from plant, invertebrate, and prokaryotic species. The data indicates that different honeys contain unique small RNA profiles, which suggests a novel avenue in developing molecular-based honey authentication tools.

12.
Brief Bioinform ; 22(4)2021 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-33073843

RESUMEN

Single-cell mRNA sequencing has been adopted as a powerful technique for understanding gene expression profiles at the single-cell level. However, challenges remain due to factors such as the inefficiency of mRNA molecular capture, technical noises and separate sequencing of cells in different batches. Normalization methods have been developed to ensure a relatively accurate analysis. This work presents a survey on 10 tools specifically designed for single-cell mRNA sequencing data preprocessing steps, among which 6 tools are used for dropout normalization and 4 tools are for batch effect correction. In this survey, we outline the main methodology for each of these tools, and we also compare these tools to evaluate their normalization performance on datasets which are simulated under the constraints of dropout inefficiency, batch effect or their combined effects. We found that Saver and Baynorm performed better than other methods in dropout normalization, in most cases. Beer and Batchelor performed better in the batch effect normalization, and the Saver-Beer tool combination and the Baynorm-Beer combination performed better in the mixed dropout-and-batch effect normalization. Over-normalization is a common issue occurred to these dropout normalization tools that is worth of future investigation. For the batch normalization tools, the capability of retaining heterogeneity between different groups of cells after normalization can be another direction for future improvement.


Asunto(s)
Perfilación de la Expresión Génica , Análisis de Secuencia por Matrices de Oligonucleótidos , ARN Mensajero , Análisis de la Célula Individual , Programas Informáticos , Transcriptoma , ARN Mensajero/biosíntesis , ARN Mensajero/genética
13.
Cancers (Basel) ; 12(8)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781574

RESUMEN

Adrenocortical Carcinoma (ACC) is a rare but aggressive malignancy with poor prognosis and limited response to available systemic therapies. Although complete surgical resection gives the best chance for long-term survival, ACC has a two-year recurrence rate of 50%, which poses a therapeutic challenge. High throughput analyses focused on characterizing the molecular signature of ACC have revealed specific micro-RNAs (miRNAs) that are associated with aggressive tumor phenotypes. MiRNAs are small non-coding RNA molecules that regulate gene expression by inhibiting mRNA translation or degrading mRNA transcripts and have been generally implicated in carcinogenesis. This review summarizes the current insights into dysregulated miRNAs in ACC tumorigenesis, their known functions, and specific targetomes. In addition, we explore the possibility of particular miRNAs to be exploited as clinical biomarkers in ACC and as potential therapeutics.

14.
Cells ; 9(1)2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31936122

RESUMEN

The first therapeutic nucleic acid, a DNA oligonucleotide, was approved for clinical use in 1998. Twenty years later, in 2018, the first therapeutic RNA-based oligonucleotide was United States Food and Drug Administration (FDA) approved. This promises to be a rapidly expanding market, as many emerging biopharmaceutical companies are developing RNA interference (RNAi)-based, and RNA-based antisense oligonucleotide therapies. However, miRNA therapeutics are noticeably absent. miRNAs are regulatory RNAs that regulate gene expression. In disease states, the expression of many miRNAs is measurably altered. The potential of miRNAs as therapies and therapeutic targets has long been discussed and in the context of a wide variety of infections and diseases. Despite the great number of studies identifying miRNAs as potential therapeutic targets, only a handful of miRNA-targeting drugs (mimics or inhibitors) have entered clinical trials. In this review, we will discuss whether the investment in finding potential miRNA therapeutic targets has yielded feasible and practicable results, the benefits and obstacles of miRNAs as therapeutic targets, and the potential future of the field.


Asunto(s)
MicroARNs/uso terapéutico , Oligonucleótidos Antisentido/uso terapéutico , Empalme Alternativo/genética , Animales , Técnicas de Transferencia de Gen , Humanos , Modelos Biológicos
15.
BMC Genomics ; 20(Suppl 9): 943, 2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31874629

RESUMEN

BACKGROUND: A long noncoding RNA (lncRNA) can act as a competing endogenous RNA (ceRNA) to compete with an mRNA for binding to the same miRNA. Such an interplay between the lncRNA, miRNA, and mRNA is called a ceRNA crosstalk. As an miRNA may have multiple lncRNA targets and multiple mRNA targets, connecting all the ceRNA crosstalks mediated by the same miRNA forms a ceRNA network. Methods have been developed to construct ceRNA networks in the literature. However, these methods have limits because they have not explored the expression characteristics of total RNAs. RESULTS: We proposed a novel method for constructing ceRNA networks and applied it to a paired RNA-seq data set. The first step of the method takes a competition regulation mechanism to derive candidate ceRNA crosstalks. Second, the method combines a competition rule and pointwise mutual information to compute a competition score for each candidate ceRNA crosstalk. Then, ceRNA crosstalks which have significant competition scores are selected to construct the ceRNA network. The key idea, pointwise mutual information, is ideally suitable for measuring the complex point-to-point relationships embedded in the ceRNA networks. CONCLUSION: Computational experiments and results demonstrate that the ceRNA networks can capture important regulatory mechanism of breast cancer, and have also revealed new insights into the treatment of breast cancer. The proposed method can be directly applied to other RNA-seq data sets for deeper disease understanding.


Asunto(s)
MicroARNs/metabolismo , ARN Largo no Codificante/metabolismo , ARN Mensajero/metabolismo , RNA-Seq , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Femenino , Humanos
16.
Front Genet ; 10: 798, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31616462

RESUMEN

Pediatric solid tumors are a diverse group of extracranial solid tumors representing approximately 40% of childhood cancers. Pediatric solid tumors are believed to arise as a result of disruptions in the developmental process of precursor cells which lead them to accumulate cancerous phenotypes. In contrast to many adult tumors, pediatric tumors typically feature a low number of genetic mutations in protein-coding genes which could explain the emergence of these phenotypes. It is likely that oncogenesis occurs after a failure at many different levels of regulation. Non-coding RNAs (ncRNAs) comprise a group of functional RNA molecules that lack protein coding potential but are essential in the regulation and maintenance of many epigenetic and post-translational mechanisms. Indeed, research has accumulated a large body of evidence implicating many ncRNAs in the regulation of well-established oncogenic networks. In this review we cover a range of extracranial solid tumors which represent some of the rarer and enigmatic childhood cancers known. We focus on two major classes of ncRNAs, microRNAs and long non-coding RNAs, which are likely to play a key role in the development of these cancers and emphasize their functional contributions and molecular interactions during tumor formation.

17.
Mol Cell Biol ; 39(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-31235478

RESUMEN

The regulation of tumor suppressor genes by microRNAs (miRNAs) is often demonstrated as a one-miRNA-to-one-target relationship. However, given the large number of miRNA sites within a 3' untranslated region (UTR), most targets likely undergo miRNA cooperation or combinatorial action. Programmed cell death 4 (PDCD4), an important tumor suppressor, prevents neoplastic events and is commonly downregulated in cancer. This study investigates the relationship between miRNA 21 (miR-21) and miR-499 in regulating PDCD4. This was explored using miRNA overexpression, mutational analysis of the PDCD4 3' UTR to assess regulation at each miRNA site, and 50% inhibitory concentration (IC50) calculations for combinatorial behavior. We demonstrate that the first miR-499 binding site within PDCD4 is inactive, but the two remaining sites are both required for PDCD4 suppression. Additionally, the binding of miR-21 to PDCD4 influenced miR-499 activity through an increase in its silencing potency and stabilization of its mature form. Furthermore, adjoining miRNA sites more than 35 nucleotides (nt) apart could potentially regulate thousands of 3' UTRs, similar to that observed between miR-21 and miR-499. The regulation of PDCD4 serves as a unique example of regulatory action by multiple miRNAs. This relationship was predicted to occur on thousands of targets and may represent a wider mode of miRNA regulation.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/genética , Neoplasias de Cabeza y Cuello/genética , MicroARNs/genética , Proteínas de Unión al ARN/genética , Carcinoma de Células Escamosas de Cabeza y Cuello/genética , Regiones no Traducidas 3' , Proteínas Reguladoras de la Apoptosis/química , Proteínas Reguladoras de la Apoptosis/metabolismo , Sitios de Unión , Línea Celular Tumoral , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica , Células HEK293 , Células HeLa , Neoplasias de Cabeza y Cuello/metabolismo , Humanos , Mutación , Unión Proteica , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo
18.
Nat Commun ; 10(1): 691, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30741925

RESUMEN

Most metazoan embryos commence development with rapid, transcriptionally silent cell divisions, with genome activation delayed until the mid-blastula transition (MBT). However, a set of genes escapes global repression and gets activated before MBT. Here we describe the formation and the spatio-temporal dynamics of a pair of distinct transcription compartments, which encompasses the earliest gene expression in zebrafish. 4D imaging of pri-miR430 and zinc-finger-gene activities by a novel, native transcription imaging approach reveals transcriptional sharing of nuclear compartments, which are regulated by homologous chromosome organisation. These compartments carry the majority of nascent-RNAs and active Polymerase II, are chromatin-depleted and represent the main sites of detectable transcription before MBT. Transcription occurs during the S-phase of increasingly permissive cleavage cycles. It is proposed, that the transcription compartment is part of the regulatory architecture of embryonic nuclei and offers a transcriptionally competent environment to facilitate early escape from repression before global genome activation.


Asunto(s)
Ciclo Celular/genética , Regulación del Desarrollo de la Expresión Génica/genética , Genoma/genética , Transcripción Genética/genética , Animales , Blastocisto/fisiología , Blástula/diagnóstico por imagen , Blástula/fisiología , Ciclo Celular/fisiología , División Celular , Núcleo Celular/fisiología , Cromatina , Cromosomas , Tomografía Computarizada Cuatridimensional , Regulación del Desarrollo de la Expresión Génica/fisiología , Genoma/fisiología , MicroARNs , Modelos Animales , Fase S/fisiología , Análisis Espacio-Temporal , Transcripción Genética/fisiología , Transcriptoma/genética , Pez Cebra/genética , Cigoto/fisiología
19.
BMC Med Genomics ; 11(Suppl 6): 118, 2018 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-30598116

RESUMEN

BACKGROUND: Gene expression-based profiling has been used to identify biomarkers for different breast cancer subtypes. However, this technique has many limitations. IsomiRs are isoforms of miRNAs that have critical roles in many biological processes and have been successfully used to distinguish various cancer types. Biomarker isomiRs for identifying different breast cancer subtypes has not been investigated. For the first time, we aim to show that isomiRs are better performing biomarkers and use them to explain molecular differences between breast cancer subtypes. RESULTS: In this study, a novel method is proposed to identify specific isomiRs that faithfully classify breast cancer subtypes. First, as a null hypothesis method we removed the lowly expressed isomiRs from small sequencing data generated from diverse breast cancers types. Second, we developed an improved mutual information-based feature selection method to calculate the weight of each isomiR expression. The weight of isomiR measures the importance of a given isomiR in classifying breast cancer subtypes. The improved mutual information enables to apply the dataset in which the feature is continuous data and label is discrete data; whereby, the traditional mutual information cannot be applied in this dataset. Finally, the support vector machine (SVM) classifier is applied to find isomiR biomarkers for subtyping. CONCLUSIONS: Here we demonstrate that isomiRs can be used as biomarkers in the identification of different breast cancer subtypes, and in addition, they may provide new insights into the diverse molecular mechanisms of breast cancers. We have also shown that the classification of different subtypes of breast cancer based on isomiRs expression is more effective than using published gene expression profiling. The proposed method provides a better performance outcome than Fisher method and Hellinger method for discovering biomarkers to distinguish different breast cancer subtypes. This novel technique could be directly applied to identify biomarkers in other diseases.


Asunto(s)
Neoplasias de la Mama/clasificación , MicroARNs , ARN Neoplásico , Biomarcadores de Tumor , Neoplasias de la Mama/genética , Conjuntos de Datos como Asunto , Humanos , MicroARNs/genética , Isoformas de ARN
20.
BMC Bioinformatics ; 18(1): 193, 2017 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-28340554

RESUMEN

BACKGROUND: MicroRNAs always function cooperatively in their regulation of gene expression. Dysfunctions of these co-functional microRNAs can play significant roles in disease development. We are interested in those multi-disease associated co-functional microRNAs that regulate their common dysfunctional target genes cooperatively in the development of multiple diseases. The research is potentially useful for human disease studies at the transcriptional level and for the study of multi-purpose microRNA therapeutics. METHODS AND RESULTS: We designed a computational method to detect multi-disease associated co-functional microRNA pairs and conducted cross disease analysis on a reconstructed disease-gene-microRNA (DGR) tripartite network. The construction of the DGR tripartite network is by the integration of newly predicted disease-microRNA associations with those relationships of diseases, microRNAs and genes maintained by existing databases. The prediction method uses a set of reliable negative samples of disease-microRNA association and a pre-computed kernel matrix instead of kernel functions. From this reconstructed DGR tripartite network, multi-disease associated co-functional microRNA pairs are detected together with their common dysfunctional target genes and ranked by a novel scoring method. We also conducted proof-of-concept case studies on cancer-related co-functional microRNA pairs as well as on non-cancer disease-related microRNA pairs. CONCLUSIONS: With the prioritization of the co-functional microRNAs that relate to a series of diseases, we found that the co-function phenomenon is not unusual. We also confirmed that the regulation of the microRNAs for the development of cancers is more complex and have more unique properties than those of non-cancer diseases.


Asunto(s)
Biología Computacional/métodos , MicroARNs/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA