Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9147-9157, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743431

RESUMEN

Recent studies have shown that methane emissions are underestimated by inventories in many US urban areas. This has important implications for climate change mitigation policy at the city, state, and national levels. Uncertainty in both the spatial distribution and sectoral allocation of urban emissions can limit the ability of policy makers to develop appropriately focused emission reduction strategies. Top-down emission estimates based on atmospheric greenhouse gas measurements can help to improve inventories and inform policy decisions. This study presents a new high-resolution (0.02 × 0.02°) methane emission inventory for New York City and its surrounding area, constructed using the latest activity data, emission factors, and spatial proxies. The new high-resolution inventory estimates of methane emissions for the New York-Newark urban area are 1.3 times larger than those for the gridded Environmental Protection Agency inventory. We used aircraft mole fraction measurements from nine research flights to optimize the high-resolution inventory emissions within a Bayesian inversion. These sectorally optimized emissions show that the high-resolution inventory still significantly underestimates methane emissions within the New York-Newark urban area, primarily because it underestimates emissions from thermogenic sources (by a factor of 2.3). This suggests that there remains a gap in our process-based understanding of urban methane emissions.


Asunto(s)
Metano , Ciudad de Nueva York , Metano/análisis , Monitoreo del Ambiente , Contaminantes Atmosféricos/análisis , Teorema de Bayes
2.
Ecol Appl ; 34(4): e2970, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38602711

RESUMEN

Tree growth is a key mechanism driving carbon sequestration in forest ecosystems. Environmental conditions are important regulators of tree growth that can vary considerably between nearby urban and rural forests. For example, trees growing in cities often experience hotter and drier conditions than their rural counterparts while also being exposed to higher levels of light, pollution, and nutrient inputs. However, the extent to which these intrinsic differences in the growing conditions of trees in urban versus rural forests influence tree growth response to climate is not well known. In this study, we tested for differences in the climate sensitivity of tree growth between urban and rural forests along a latitudinal transect in the eastern United States that included Boston, Massachusetts, New York City, New York, and Baltimore, Maryland. Using dendrochronology analyses of tree cores from 55 white oak trees (Quercus alba), 55 red maple trees (Acer rubrum), and 41 red oak trees (Quercus rubra) we investigated the impacts of heat stress and water stress on the radial growth of individual trees. Across our three-city study, we found that tree growth was more closely correlated with climate stress in the cooler climate cities of Boston and New York than in Baltimore. Furthermore, heat stress was a significant hindrance to tree growth in higher latitudes while the impacts of water stress appeared to be more evenly distributed across latitudes. We also found that the growth of oak trees, but not red maple trees, in the urban sites of Boston and New York City was more adversely impacted by heat stress than their rural counterparts, but we did not see these urban-rural differences in Maryland. Trees provide a wide range of important ecosystem services and increasing tree canopy cover was typically an important component of urban sustainability strategies. In light of our findings that urbanization can influence how tree growth responds to a warming climate, we suggest that municipalities consider these interactions when developing their tree-planting palettes and when estimating the capacity of urban forests to contribute to broader sustainability goals in the future.


Asunto(s)
Cambio Climático , Árboles , Urbanización , Árboles/crecimiento & desarrollo , Acer/crecimiento & desarrollo , Acer/fisiología , Quercus/crecimiento & desarrollo , Quercus/fisiología , Bosques , Ciudades
3.
Proc Natl Acad Sci U S A ; 120(36): e2307519120, 2023 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-37643216

RESUMEN

Temperate forests are threatened by urbanization and fragmentation, with over 20% (118,300 km2) of U.S. forest land projected to be subsumed by urban land development. We leveraged a unique, well-characterized urban-to-rural and forest edge-to-interior gradient to identify the combined impact of these two land use changes-urbanization and forest edge creation-on the soil microbial community in native remnant forests. We found evidence of mutualism breakdown between trees and their fungal root mutualists [ectomycorrhizal (ECM) fungi] with urbanization, where ECM fungi colonized fewer tree roots and had less connectivity in soil microbiome networks in urban forests compared to rural forests. However, urbanization did not reduce the relative abundance of ECM fungi in forest soils; instead, forest edges alone led to strong reductions in ECM fungal abundance. At forest edges, ECM fungi were replaced by plant and animal pathogens, as well as copiotrophic, xenobiotic-degrading, and nitrogen-cycling bacteria, including nitrifiers and denitrifiers. Urbanization and forest edges interacted to generate new "suites" of microbes, with urban interior forests harboring highly homogenized microbiomes, while edge forest microbiomes were more heterogeneous and less stable, showing increased vulnerability to low soil moisture. When scaled to the regional level, we found that forest soils are projected to harbor high abundances of fungal pathogens and denitrifying bacteria, even in rural areas, due to the widespread existence of forest edges. Our results highlight the potential for soil microbiome dysfunction-including increased greenhouse gas production-in temperate forest regions that are subsumed by urban expansion, both now and in the future.


Asunto(s)
Micorrizas , Simbiosis , Animales , Urbanización , Bosques , Suelo
4.
Geohealth ; 7(8): e2023GH000830, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37538511

RESUMEN

Greenspace in schools might enhance students' academic performance. However, the literature-dominated by ecological studies at the school level in countries from the Northern Hemisphere-presents mixed evidence of a beneficial association. We evaluated the association between school greenness and student-level academic performance in Santiago, Chile, a capital city of the Global South. This cross-sectional study included 281,695 fourth-grade students attending 1,498 public, charter, and private schools in Santiago city between 2014 and 2018. Student-level academic performance was assessed using standardized test scores and indicators of attainment of learning standards in mathematics and reading. School greenness was estimated using Normalized Difference Vegetation Index (NDVI). Linear and generalized linear mixed-effects models were fit to evaluate associations, adjusting for individual- and school-level sociodemographic factors. Analyses were stratified by school type. In fully adjusted models, a 0.1 increase in school greenness was associated with higher test scores in mathematics (36.9 points, 95% CI: 2.49; 4.88) and in reading (1.84 points, 95% CI: 0.73; 2.95); as well as with higher odds of attaining learning standards in mathematics (OR: 1.20, 95% CI: 1.12; 1.28) and reading (OR: 1.07, 95% CI: 1.02; 1.13). Stratified analysis showed differences by school type, with associations of greater magnitude and strength for students attending public schools. No significant associations were detected for students in private schools. Higher school greenness was associated with improved individual-level academic outcomes among elementary-aged students in a capital city in South America. Our results highlight the potential of greenness in the school environment to moderate educational and environmental inequalities in urban areas.

5.
Sci Total Environ ; 891: 164320, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37236472

RESUMEN

Global proliferation of forest edges through anthropogenic land-use change and forest fragmentation is well documented, and while forest fragmentation has clear consequences for soil carbon (C) cycling, underlying drivers of belowground activity at the forest edge remain poorly understood. Increasing soil C losses via respiration have been observed at rural forest edges, but this process was suppressed at urban forest edges. We offer a comprehensive, coupled investigation of abiotic soil conditions and biotic soil activity from forest edge to interior at eight sites along an urbanization gradient to elucidate how environmental stressors are linked to soil C cycling at the forest edge. Despite significant diverging trends in edge soil C losses between urban and rural sites, we did not find comparable differences in soil % C or microbial enzyme activity, suggesting an unexpected decoupling of soil C fluxes and pools at forest edges. We demonstrate that across site types, soils at forest edges were less acidic than the forest interior (p < 0.0001), and soil pH was positively correlated with soil calcium, magnesium and sodium content (adj R2 = 0.37), which were also elevated at the edge. Compared to forest interior, forest edge soils exhibited a 17.8 % increase in sand content and elevated freeze-thaw frequency with probable downstream effects on root turnover and decomposition. Using these and other novel forest edge data, we demonstrate that significant variation in edge soil respiration (adj R2 = 0.46; p = 0.0002) and C content (adj R2 = 0.86; p < 0.0001) can be explained using soil parameters often mediated by human activity (e.g., soil pH, trace metal and cation concentrations, soil temperature), and we emphasize the complex influence of multiple, simultaneous global change drivers at forest edges. Forest edge soils reflect legacies of anthropogenic land-use and modern human management, and this must be accounted for to understand soil activity and C cycling across fragmented landscapes.


Asunto(s)
Carbono , Suelo , Humanos , Suelo/química , Bosques , Urbanización , Temperatura
6.
Glob Chang Biol ; 29(8): 2156-2171, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36682025

RESUMEN

Nitrogen (N) availability relative to plant demand has been declining in recent years in terrestrial ecosystems throughout the world, a phenomenon known as N oligotrophication. The temperate forests of the northeastern U.S. have experienced a particularly steep decline in bioavailable N, which is expected to be exacerbated by climate change. This region has also experienced rapid urban expansion in recent decades that leads to forest fragmentation, and it is unknown whether and how these changes affect N availability and uptake by forest trees. Many studies have examined the impact of either urbanization or forest fragmentation on nitrogen (N) cycling, but none to our knowledge have focused on the combined effects of these co-occurring environmental changes. We examined the effects of urbanization and fragmentation on oak-dominated (Quercus spp.) forests along an urban to rural gradient from Boston to central Massachusetts (MA). At eight study sites along the urbanization gradient, plant and soil measurements were made along a 90 m transect from a developed edge to an intact forest interior. Rates of net ammonification, net mineralization, and foliar N concentrations were significantly higher in urban than rural sites, while net nitrification and foliar C:N were not different between urban and rural forests. At urban sites, foliar N and net ammonification and mineralization were higher at forest interiors compared to edges, while net nitrification and foliar C:N were higher at rural forest edges than interiors. These results indicate that urban forests in the northeastern U.S. have greater soil N availability and N uptake by trees compared to rural forests, counteracting the trend for widespread N oligotrophication in temperate forests around the globe. Such increases in available N are diminished at forest edges, however, demonstrating that forest fragmentation has the opposite effect of urbanization on coupled N availability and demand by trees.


Asunto(s)
Ecosistema , Nitrógeno , Nitrógeno/análisis , Suelo , Urbanización , Bosques , Árboles
7.
Sci Total Environ ; 857(Pt 3): 159663, 2023 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-36302415

RESUMEN

Extreme heat represents a growing threat to public health, especially across the densely populated, developed landscape of cities. Climate adaptation strategies that aim to manage urban microclimates through purposeful design can reduce the heat exposure of urban populations, however, it is unclear how the temperature impacts of urban green space and albedo vary across cities and background climate. This study quantifies the sensitivity of surface temperature to landcover characteristics tied to two widely used climate adaptation strategies, urban greening and albedo manipulation (e.g. white roofs), by combining long-term remote sensing observations of land surface temperature, albedo, and moisture with high-resolution landcover datasets in a spatial regression analysis at the census block scale across seven United States cities. We find tree cover to have an average cooling impact of -0.089 K per % cover, which is approximately four times stronger than the average grass cover cooling impact of -0.021 K per % cover. Variability in the magnitude of grass cover cooling impacts was primarily a function of vegetation moisture content, with the Land Surface Water Index (LSWI) explaining 89 % of the variability in grass cover cooling impacts across cities. Variability in tree cover cooling impacts was primarily a function of sunlight and vegetation moisture content, with solar irradiance and LSWI explaining 97 % of the cooling variability across cities. Albedo cooling impacts were consistent across cities with an average cooling impact of -0.187 K per increase of 0.01. While these interventions are broadly effective across cities, there are critical regional trade-offs between vegetation cooling efficiency, irrigation requirements, and the temporal duration and evolution of the cooling benefits. In warm, arid cities, high albedo surfaces offer multifaceted benefits such as cooling and water conservation, whereas temperate, mesic cities likely benefit from a combination of strategies, with greening efforts targeting highly paved neighborhoods.


Asunto(s)
Parques Recreativos , Temperatura , Humanos , Ciudades , Clima , Árboles , Estados Unidos
8.
Sci Total Environ ; 845: 157283, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35820520

RESUMEN

We provide a novel method to assess the heat mitigation impacts of greenspace though studying the mechanisms of ecosystems responsible for benefits and connecting them to heat exposure metrics. We demonstrate how the ecosystem services framework can be integrated into current practices of environmental health research using supply/demand state-of-the-art methods of ecological modeling of urban greenspace. We compared the supply of cooling ecosystem services in Boston measured through an indicator of high resolution evapotranspiration modeling, with the demand for benefits from cooling measured as a heat exposure risk score based on exposure, hazard and population characteristics. The resulting evapotranspiration indicator follows a pattern similar to conventional greenspace indicators based on vegetation abundance, except in warmer areas such as those with higher levels of impervious surface. We identified demand-supply mismatch areas across the city of Boston, some coinciding with affordable housing complexes and long term care facilities. This novel ES-framework provides cross-disciplinary methods to prioritize urban areas where greenspace interventions can have the most impact based on heat-related demand.


Asunto(s)
Ecosistema , Calor , Ciudades , Frío , Parques Recreativos
9.
Sci Data ; 9(1): 361, 2022 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-35750672

RESUMEN

Urban regions emit a large fraction of anthropogenic emissions of greenhouse gases (GHG) such as carbon dioxide (CO2) and methane (CH4) that contribute to modern-day climate change. As such, a growing number of urban policymakers and stakeholders are adopting emission reduction targets and implementing policies to reach those targets. Over the past two decades research teams have established urban GHG monitoring networks to determine how much, where, and why a particular city emits GHGs, and to track changes in emissions over time. Coordination among these efforts has been limited, restricting the scope of analyses and insights. Here we present a harmonized data set synthesizing urban GHG observations from cities with monitoring networks across North America that will facilitate cross-city analyses and address scientific questions that are difficult to address in isolation.

10.
Glob Chang Biol ; 28(9): 3094-3109, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35170155

RESUMEN

As urbanization and forest fragmentation increase around the globe, it is critical to understand how rates of respiration and carbon losses from soil carbon pools are affected by these processes. This study characterizes soils in fragmented forests along an urban to rural gradient, evaluating the sensitivity of soil respiration to changes in soil temperature and moisture near the forest edge. While previous studies found elevated rates of soil respiration at temperate forest edges in rural areas compared to the forest interior, we find that soil respiration is suppressed at the forest edge in urban areas. At urban sites, respiration rates are 25% lower at the forest edge relative to the interior, likely due to high temperature and aridity conditions near urban edges. While rural soils continue to respire with increasing temperatures, urban soil respiration rates asymptote as temperatures climb and soils dry. Soil temperature- and moisture-sensitivity modeling shows that respiration rates in urban soils are less sensitive to rising temperatures than those in rural soils. Scaling these results to Massachusetts (MA), which encompasses 0.25 Mha of the urban forest, we find that failure to account for decreases in soil respiration rates near urban forest edges leads to an overestimate of growing-season soil carbon fluxes of >350,000 Mg C. This difference is almost 2.5 times that for rural soils in the analogous comparison (underestimate of <143,000 Mg C), even though rural forest area is more than four times greater than urban forest area in MA. While a changing climate may stimulate carbon losses from rural forest edge soils, urban forests may experience enhanced soil carbon sequestration near the forest edge. These findings highlight the need to capture the effects of forest fragmentation and land use context when making projections about soil behavior and carbon cycling in a warming and increasingly urbanized world.


Asunto(s)
Bosques , Suelo , Ciclo del Carbono , Secuestro de Carbono , Respiración
11.
J Expo Sci Environ Epidemiol ; 32(2): 213-222, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35094014

RESUMEN

BACKGROUND: The Normalized Difference Vegetation Index (NDVI) is a measure of greenness widely used in environmental health research. High spatial resolution NDVI has become increasingly available; however, the implications of its use in exposure assessment are not well understood. OBJECTIVE: To quantify the impact of NDVI spatial resolution on greenness exposure misclassification. METHODS: Greenness exposure was assessed for 31,328 children in the Greater Boston Area in 2016 using NDVI from MODIS (250 m2), Landsat 8 (30 m2), Sentinel-2 (10 m2), and the National Agricultural Imagery Program (NAIP, 1 m2). We compared continuous and categorical greenness estimates for multiple buffer sizes under a reliability assessment framework. Exposure misclassification was evaluated using NAIP data as reference. RESULTS: Greenness estimates were greater for coarser resolution NDVI, but exposure distributions were similar. Continuous estimates showed poor agreement and high consistency, while agreement in categorical estimates ranged from poor to strong. Exposure misclassification was higher with greater differences in resolution, smaller buffers, and greater number of exposure quantiles. The proportion of participants changing greenness quantiles was higher for MODIS (11-60%), followed by Landsat 8 (6-44%), and Sentinel-2 (5-33%). SIGNIFICANCE: Greenness exposure assessment is sensitive to spatial resolution of NDVI, aggregation area, and number of exposure quantiles. Greenness exposure decisions should ponder relevant pathways for specific health outcomes and operational considerations.


Asunto(s)
Salud Ambiental , Boston , Niño , Estudios de Cohortes , Humanos , Reproducibilidad de los Resultados
12.
Nat Commun ; 12(1): 7181, 2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34893596

RESUMEN

Fragmentation transforms the environment along forest edges. The prevailing narrative, driven by research in tropical systems, suggests that edge environments increase tree mortality and structural degradation resulting in net decreases in ecosystem productivity. We show that, in contrast to tropical systems, temperate forest edges exhibit increased forest growth and biomass with no change in total mortality relative to the forest interior. We analyze >48,000 forest inventory plots across the north-eastern US using a quasi-experimental matching design. At forest edges adjacent to anthropogenic land covers, we report increases of 36.3% and 24.1% in forest growth and biomass, respectively. Inclusion of edge impacts increases estimates of forest productivity by up to 23% in agriculture-dominated areas, 15% in the metropolitan coast, and +2% in the least-fragmented regions. We also quantify forest fragmentation globally, at 30-m resolution, showing that temperate forests contain 52% more edge forest area than tropical forests. Our analyses upend the conventional wisdom of forest edges as less productive than intact forest and call for a reassessment of the conservation value of forest fragments.


Asunto(s)
Fenómenos Biológicos , Biomasa , Bosques , Árboles/crecimiento & desarrollo , Agricultura , Conservación de los Recursos Naturales , Ecología , Ecosistema , Clima Tropical
13.
Environ Sci Process Impacts ; 23(12): 1914-1929, 2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34739015

RESUMEN

Mercury (Hg) is an environmental toxicant dangerous to human health and the environment. Its anthropogenic emissions are regulated by global, regional, and local policies. Here, we investigate Hg sources in the coastal city of Boston, the third largest metropolitan area in the Northeastern United States. With a median of 1.37 ng m-3, atmospheric Hg concentrations measured from August 2017 to April 2019 were at the low end of the range reported in the Northern Hemisphere and in the range reported at North American rural sites. Despite relatively low ambient Hg concentrations, we estimate anthropogenic emissions to be 3-7 times higher than in current emission inventories using a measurement-model framework, suggesting an underestimation of small point and/or nonpoint emissions. We also test the hypothesis that a legacy Hg source from the ocean contributes to atmospheric Hg concentrations in the study area; legacy emissions (recycling of previously deposited Hg) account for ∼60% of Hg emitted annually worldwide (and much of this recycling takes place through the oceans). We find that elevated concentrations observed during easterly oceanic winds can be fully explained by low wind speeds and recirculating air allowing for accumulation of land-based emissions. This study suggests that the influence of nonpoint land-based emissions may be comparable in size to point sources in some regions and highlights the benefits of further top-down studies in other areas.


Asunto(s)
Contaminantes Atmosféricos , Mercurio , Contaminantes Atmosféricos/análisis , Boston , Monitoreo del Ambiente , Humanos , Massachusetts , Mercurio/análisis , Océanos y Mares
14.
Proc Natl Acad Sci U S A ; 118(44)2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34697236

RESUMEN

Across many cities, estimates of methane emissions from natural gas (NG) distribution and end use based on atmospheric measurements have generally been more than double bottom-up estimates. We present a top-down study of NG methane emissions from the Boston urban region spanning 8 y (2012 to 2020) to assess total emissions, their seasonality, and trends. We used methane and ethane observations from five sites in and around Boston, combined with a high-resolution transport model, to calculate methane emissions of 76 ± 18 Gg/yr, with 49 ± 9 Gg/yr attributed to NG losses. We found no significant trend in the NG loss rate over 8 y, despite efforts from the city and state to increase the rate of repairing NG pipeline leaks. We estimate that 2.5 ± 0.5% of the gas entering the urban region is lost, approximately three times higher than bottom-up estimates. We saw a strong correlation between top-down NG emissions and NG consumed on a seasonal basis. This suggests that consumption-driven losses, such as in transmission or end-use, may be a large component of emissions that is missing from inventories, and require future policy action. We also compared top-down NG emission estimates from six US cities, all of which indicate significant missing sources in bottom-up inventories. Across these cities, we estimate NG losses from distribution and end use amount to 20 to 36% of all losses from the US NG supply chain, with a total loss rate of 3.3 to 4.7% of NG from well pad to urban consumer, notably larger than the current Environmental Protection Agency estimate of 1.4% [R. A. Alvarez et al., Science 361, 186-188 (2018)].

15.
Carbon Balance Manag ; 16(1): 1, 2021 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-33415575

RESUMEN

BACKGROUND: With a lack of United States federal policy to address climate change, cities, the private sector, and universities have shouldered much of the work to reduce carbon dioxide (CO2) and other greenhouse gas emissions. This study aims to determine how landcover characteristics influence the amount of carbon (C) sequestered and respired via biological processes, evaluating the role of land management on the overall C budget of an urban university. Boston University published a comprehensive Climate Action Plan in 2017 with the goal of achieving C neutrality by 2040. In this study, we digitized and discretized each of Boston University's three urban campuses into landcover types, with C sequestration and respiration rates measured and scaled to provide a University-wide estimate of biogenic C fluxes within the broader context of total University emissions. RESULTS: Each of Boston University's three highly urban campuses were net sources of biogenic C to the atmosphere. While trees were estimated to sequester 0.6 ± 0.2 kg C m-2 canopy cover year-1, mulch and lawn areas in 2018 emitted C at rates of 1.7 ± 0.4 kg C m-2 year-1 and 1.4 ± 0.4 kg C m-2 year-1, respectively. C uptake by tree canopy cover, which can spatially overlap lawn and mulched landcovers, was not large enough to offset biogenic emissions. The proportion of biogenic emissions to Scope 1 anthropogenic emissions on each campus varied from 0.5% to 2%, and depended primarily on the total anthropogenic emissions on each campus. CONCLUSIONS: Our study quantifies the role of urban landcover in local C budgets, offering insights on how landscaping management strategies-such as decreasing mulch application rates and expanding tree canopy extent-can assist universities in minimizing biogenic C emissions and even potentially creating a small biogenic C sink. Although biogenic C fluxes represent a small fraction of overall anthropogenic emissions on urban university campuses, these biogenic fluxes are under active management by the university and should be included in climate action plans.

16.
PLoS One ; 15(10): e0224959, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33031384

RESUMEN

Heat poses an urgent threat to public health in cities, as the urban heat island (UHI) effect can amplify exposures, contributing to high heat-related mortality and morbidity. Urban trees have the potential to mitigate heat by providing substantial cooling, as well as co-benefits such as reductions in energy consumption. The City of Boston has attempted to expand its urban canopy, yet maintenance costs and high tree mortality have hindered successful canopy expansion. Here, we present an interactive web application called Right Place, Right Tree-Boston that aims to support informed decision-making for planting new trees. To highlight priority regions for canopy expansion, we developed a Boston-specific Heat Vulnerability Index (HVI) and present this alongside maps of summer daytime land surface temperatures. We also provide information about tree pests and diseases, suitability of species for various conditions, land ownership, maintenance tips, and alternatives to tree planting. This web application is designed to support decision-making at multiple spatial scales, to assist city officials as well as residents who are interested in expanding or maintaining Boston's urban forest.


Asunto(s)
Conservación de los Recursos Energéticos/métodos , Árboles/crecimiento & desarrollo , Agricultura , Boston , Toma de Decisiones , Calor , Remodelación Urbana
17.
Sci Total Environ ; 720: 137409, 2020 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-32145612

RESUMEN

Reducing terrestrial carbon emissions to the atmosphere requires accurate measuring, reporting and verification of land surface activities that emit or sequester carbon. Many carbon accounting practices in use today provide only regionally aggregated estimates and neglect the spatial variation of pre-disturbance forest conditions and post-disturbance land cover dynamics. Here, we present a spatially explicit carbon bookkeeping model that utilizes a high-resolution map of aboveground biomass and land cover dynamics derived from time series analysis of Landsat data. The model produces estimates of carbon emissions/uptake with model uncertainty at Landsat resolution. In a case study of the Colombian Amazon, an area of 47 million ha, the model estimated total emissions of 3.97 ± 0.71 Tg C yr-1 and uptake by regenerating forests of 1.11 ± 0.23 Tg C yr-1 2001-2015, with an additional 45.1 ± 7.99 Tg of carbon remaining in the form of woody products, decomposing slash and charcoal at the end of 2015 (estimates provided with ±95% confidence intervals). Total emissions attributed to the study period (including carbon not yet released) is 6.97 ± 1.24 Tg C yr-1. The presented model is based on recent technological advancements in the field of remote sensing to achieve spatially explicit modeling of carbon emissions and uptake associated with land surface changes and post-disturbance landscapes that is compliant with international reporting criteria.

18.
Sci Total Environ ; 709: 136196, 2020 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-31887518

RESUMEN

Ecosystem services provided by urban forests are increasingly included in municipal-level responses to climate change. However, the ecosystem functions that generate these services, such as biomass carbon (C) uptake, can differ substantially from nearby rural forest. In particular, the scaled effect of canopy spatial configuration on tree growth in cities is uncertain, as is the scope for medium-term policy intervention. This study integrates high spatial resolution data on tree canopy and biomass in the city of Boston, Massachusetts, with local measurements of tree growth rates to estimate the magnitude and distribution of annual biomass C uptake. We further project C uptake, biomass, and canopy cover change to 2040 under alternative policy scenarios affecting the planting and preservation of urban trees. Our analysis shows that 85% of tree canopy area was within 10 m of an edge, indicating essentially open growing conditions. Using growth models accounting for canopy edge effects and growth context, Boston's current biomass C uptake may be approximately double (median 10.9 GgC yr-1, 0.5 MgC ha-1 yr-1) the estimates based on rural forest growth, much of it occurring in high-density residential areas. Total annual C uptake to long-term biomass storage was equivalent to <1% of estimated annual fossil CO2 emissions for the city. In built-up areas, reducing mortality in larger trees resulted in the highest predicted increase in canopy cover (+25%) and biomass C stocks (236 GgC) by 2040, while planting trees in available road margins resulted in the greatest predicted annual C uptake (7.1 GgC yr-1). This study highlights the importance of accounting for the altered ecosystem structure and function in urban areas in evaluating ecosystem services. Effective municipal climate responses should consider the substantial fraction of total services performed by trees in developed areas, which may produce strong but localized atmospheric C sinks.


Asunto(s)
Biomasa , Boston , Carbono , Ciudades , Bosques , Massachusetts , Árboles
19.
PLoS One ; 14(5): e0215846, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31067257

RESUMEN

Municipalities are embracing greening initiatives as a key strategy for improving urban sustainability and combatting the environmental impacts of expansive urbanization. Many greening initiatives include goals to increase urban canopy cover through tree planting, however, our understanding of street tree ecosystem dynamics is limited and our understanding of vegetation structure and function based on intact, rural forests does not apply well to urban ecosystems. In this study, we estimate size-specific growth, mortality, and planting rates in trees under municipal control, use a box model to forecast short-term changes in street tree aboveground carbon pools under several planting and management scenarios, and compare our findings to rural, forested systems. We find accelerated rates of carbon cycling in street trees with mean diameter growth rates nearly four times faster in Boston, MA, USA (0.78 ± 0.02 cm yr-1) than in rural forest stands of MA (0.21 ± 0.02 cm yr-1) and mean mortality rates more than double rural forested rates (3.06 ± 0.25% yr-1 in street trees; 1.41 ± 0.04% yr-1 in rural trees). Despite the enhanced growth of urban trees, high mortality losses result in a net loss of street tree carbon storage over time (-0.15 ± 0.09 Mg C ha-1 yr-1). Planting initiatives alone may not be sufficient to maintain or enhance canopy cover and biomass due to the unique demographics of urban ecosystems. Initiatives to aid in the establishment and preservation of tree health are central for increasing street tree canopy cover and maintaining/increasing carbon storage in vegetation. Strategic combinations of planting and maintenance will maximize the viability of greening initiatives as an effective climate mitigation tool.


Asunto(s)
Monitoreo del Ambiente , Árboles/crecimiento & desarrollo , Ciudades , Cinética , Modelos Estadísticos , Encuestas y Cuestionarios
20.
Proc Natl Acad Sci U S A ; 115(29): 7491-7496, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29967154

RESUMEN

With the pending withdrawal of the United States from the Paris Climate Accord, cities are now leading US actions toward reducing greenhouse gas emissions. Implementing effective mitigation strategies requires the ability to measure and track emissions over time and at various scales. We report CO2 emissions in the Boston, MA, urban region from September 2013 to December 2014 based on atmospheric observations in an inverse model framework. Continuous atmospheric measurements of CO2 from five sites in and around Boston were combined with a high-resolution bottom-up CO2 emission inventory and a Lagrangian particle dispersion model to determine regional emissions. Our model-measurement framework incorporates emissions estimates from submodels for both anthropogenic and biological CO2 fluxes, and development of a CO2 concentration curtain at the boundary of the study region based on a combination of tower measurements and modeled vertical concentration gradients. We demonstrate that an emission inventory with high spatial and temporal resolution and the inclusion of urban biological fluxes are both essential to accurately modeling annual CO2 fluxes using surface measurement networks. We calculated annual average emissions in the Boston region of 0.92 kg C·m-2·y-1 (95% confidence interval: 0.79 to 1.06), which is 14% higher than the Anthropogenic Carbon Emissions System inventory. Based on the capability of the model-measurement approach demonstrated here, our framework should be able to detect changes in CO2 emissions of greater than 18%, providing stakeholders with critical information to assess mitigation efforts in Boston and surrounding areas.


Asunto(s)
Atmósfera/análisis , Dióxido de Carbono/análisis , Gases de Efecto Invernadero/análisis , Modelos Teóricos , Remodelación Urbana , Boston
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...