Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Inflammopharmacology ; 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926298

RESUMEN

INTRODUCTION: The efficacy of cancer treatments has links to the intestinal microbiome. Mucositis is a dose-limiting intestinal pro-inflammatory side effect of cancer treatments, that increases the risk of diarrhoea, mucositis, and in severe cases, febrile neutropenia. METHODS: The effect of cancer treatments on Quality of Life (QoL) was assessed using the FACT C questionnaire that included patient wellbeing and gut adverse symptoms (e.g. diarrhoea). Participants rated faecal samples via the Bristol Stool Chart. In addition, bacterial DNA was extracted from faecal samples, sequenced, and taxonomically examined. The incidence / severity of neutropenia was assessed with white blood cell and neutrophil counts. Circulating SCFAs and plasma lipopolysaccharide (LPS) endotoxin levels were recorded and correlated to intestinal mucositis. RESULTS: Improvement in bowel function, with reduction in constipation and or diarrhoea or absence of significant disturbance to bowel function was recorded in 85% of the participants. One participant developed febrile neutropenia and two developed bowel toxicity during the study, that was unrelated to the test formulation. No significant changes in microbiota alpha- and beta-diversity at the phylum and species levels respectively from baseline to end of study treatment was observed. None of the participants had raised plasma-endotoxin levels from baseline to the first and subsequent treatment cycles for their cancers. Probiotics in this cohort were deemed safe and tolerable. Significant improvement in emotional QoL scores (p = 0.015) was reported with increased number of chemotherapy cycles. In a related observational study of exceptional responders to chemotherapy, participants were found to have had a high intake of fruits, vegetables, and fibre possibly indicative of a more balanced intestinal microbiota. CONCLUSION: A multi-strain probiotic formulation was safe and tolerated in this chronically ill cohort that were undergoing oncological treatment. The probiotic formulation alleviated diarrhoea, constipation and maintained stool consistency/frequency during the multiple treatments with chemotherapy and radiotherapy. Intestinal dysbiosis that is characterised by decreased microbial diversity and increased pro-inflammatory species was not observed. Probiotic supplementation may have helped reduce dysbiosis during cancer treatments. These improvements may have been critical with the observation that emotional wellbeing was significantly improved from baseline. Hence albeit that the study had limitations, the probiotic intervention provided adjunctive treatment support to the patients. What is of scientifically plausible interest is that probiotics have a long association historically with human hosts and as such ratify their inclusion offering a significant adjunctive therapeutic potential. Future studies warrant larger sample sizes, control groups and should limit recruitment to a largely homogenous group of patients.

2.
Appl Environ Microbiol ; 89(10): e0047223, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37800954

RESUMEN

Cholera is a major public health problem in developing and underdeveloped countries; however, it remains of concern to developed countries such as Australia as international travel-related or locally acquired cholera or diarrheal disease cases are still reported. Cholera is mainly caused by cholera toxin (CT) producing toxigenic O1 and O139 serogroup Vibrio cholerae strains. While most toxigenic V. cholerae cases in Australia are thought to be caused by international-acquired infections, Australia has its own indigenous toxigenic and non-toxigenic O1 and non-O1, non-O139 V. cholerae (NOVC) strains. In Australia, in the 1970s and again in 2012, it was reported that south-east Queensland riverways were a reservoir for toxigenic V. cholerae strains that were linked to local cases. Further surveillance on environmental reservoirs, such as riverways, has not been reported in the literature in the last 10 years. Here we present data from sites previously related to outbreaks and surveillance sampling to detect the presence of V. cholerae using PCR in conjunction with MALDI-TOF and whole-genome sequencing. In this study, we were able to detect NOVC at all 10 sites with all sites having toxigenic non-O1, non-O139 strains. Among 133 NOVC isolates, 22 were whole-genome sequenced and compared with previously sequenced Australian O1 and NOVC strains. None of the samples tested grew toxigenic or non-toxigenic O1 or O139, responsible for epidemic disease. Since NOVC can be pathogenic, continuous surveillance is required to assist in theclinical and envir rapid identification of sources of any outbreaks and to assist public health authorities in implementing control measures. IMPORTANCE Vibrio cholerae is a natural inhabitant of aquatic environments, both freshwater and seawater, in addition to its clinical significance as a causative agent of acute diarrhea and extraintestinal infections. Previously, both toxigenic and non-toxigenic, clinical, and environmental V. cholerae strains have been reported in Queensland, Australia. This study aimed to characterize recent surveillance of environmental NOVC strains isolated from Queensland River waterways to understand their virulence, antimicrobial resistance profile and to place genetic current V. cholerae strains from Australia in context with international strains. The findings from this study suggest the presence of unique toxigenic V. cholerae in Queensland river water systems that are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment is important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. The genomics of environmental V. cholerae could assist us to understand the natural ecology and evolution of this bacterium in natural environments with respect to global warming and climate change.


Asunto(s)
Enfermedad Relacionada con los Viajes , Vibrio cholerae , Humanos , Australia/epidemiología , Cólera/epidemiología , Cólera/microbiología , Queensland/epidemiología , Ríos
3.
J Microbiol Methods ; 211: 106783, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37442279

RESUMEN

BACKGROUND: Bloodstream infections (BSIs) (presence of pathogenic organism in blood) that progress to sepsis (life-threatening organ dysfunction caused by the body's dysregulated response to an infection) is a major healthcare issue globally with close to 50 million cases annually and 11 million sepsis-related deaths, representing about 20% of all global deaths. A rapid diagnostic assay with accurate pathogen identification has the potential to improve antibiotic stewardship and clinical outcomes. METHODS: The InfectID-Bloodstream Infection (InfectID-BSI) test is a real-time quantitative PCR assay, which detects 26 of the most prevalent BSI-causing pathogens (bacteria and yeast) directly from blood (without need for pre-culture). InfectID-BSI identifies pathogens using highly discriminatory single nucleotide polymorphisms located in conserved regions of bacterial and fungal genomes. This report details the findings of a patient study which compared InfectID-BSI with conventional blood culture at two public hospitals in Queensland, Australia, using 375 whole blood samples (from multiple anatomical sites, eg. left arm, right arm, etc.) from 203 patients that have been clinically assessed to have signs and symptoms of suspected BSI, sepsis and septic shock. FINDINGS: InfectID-BSI was a more sensitive method for microorganism detection compared with blood culture (BacT/ALERT, bioMerieux) for positivity rate (102 vs 54 detections), detection of fastidious organisms (Streptococcus pneumoniae and Aerococcus viridans) (25 vs 0), detection of low bioburden infections (measured as genome copies/0.35 mL of blood), time to result (<3 h including DNA extraction for InfectID-BSI vs 16 h-48 h for blood culture), and volume of blood required for testing (0.5 mL vs 40-60 mL). InfectID-BSI is an excellent 'rule out' test for BSI, with a negative predictive value of 99.7%. InfectID-BSI's ability to detect 'difficult to culture' microorganisms re-defines the four most prevalent BSI-associated pathogens as E. coli (28.4%), S. pneumoniae (17.6%), S. aureus (13.7%), and S. epidermidis (13.7%). INTERPRETATION: InfectID-BSI has the potential to alter the clinical treatment pathway for patients with BSIs that are at risk of progressing to sepsis.


Asunto(s)
Escherichia coli , Sepsis , Humanos , Staphylococcus aureus , Sepsis/diagnóstico , Sepsis/microbiología , Bacterias/genética , Reacción en Cadena en Tiempo Real de la Polimerasa/métodos , Saccharomyces cerevisiae
4.
Gut Microbes ; 15(1): 2221429, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287399

RESUMEN

Observational studies suggest a link between vitamin D and the composition of the gut microbiome, but there is little evidence from randomized controlled trials of vitamin D supplementation. We analyzed data from the D-Health Trial, a randomized, double-blind, placebo-controlled trial. We recruited 21,315 Australians aged 60-84 y and randomized them to 60,000 IU of vitamin D3 or placebo monthly for 5 y. Stool samples were collected from a sample of 835 participants (417 in the placebo and 418 in the vitamin D group) approximately 5 y after randomization. We characterized the gut microbiome using 16S rRNA gene sequencing. We used linear regression to compare alpha diversity indices (i.e. Shannon index (primary outcome), richness, inverse Simpson index), and the ratio of Firmicutes to Bacteroidetes between the two groups. We analyzed between-sample (beta) diversity (i.e. Bray Curtis distance and UniFrac index) using principal coordinate analysis and used PERMANOVA to test for significant clustering according to randomization group. We also assessed the difference in the abundance of the 20 most abundant genera between the two groups using negative binomial regression model with adjustment for multiple testing. Approximately half the participants included in this analysis were women (mean age 69.4 y). Vitamin D supplementation did not alter the Shannon diversity index (mean 3.51 versus 3.52 in the placebo and vitamin D groups, respectively, p = 0.50). Similarly, there was little difference between the groups for other alpha diversity indices, the abundance of different genera, and the Firmicutes-to-Bacteroidetes ratio. We did not observe clustering of bacterial communities according to randomization group. In conlusion, monthly doses of 60,000 IU of vitamin D supplementation for 5 y did not alter the composition of the gut microbiome in older Australians.


Asunto(s)
Suplementos Dietéticos , Microbioma Gastrointestinal , Vitamina D , Anciano , Femenino , Humanos , Masculino , Australia , Bacteroidetes , Método Doble Ciego , Firmicutes , ARN Ribosómico 16S , Anciano de 80 o más Años
5.
Int J Mol Sci ; 24(5)2023 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-36901963

RESUMEN

The bactericidal effects of inhalable ciprofloxacin (CIP) loaded-poly(2-ethyl-2-oxazoline) (PEtOx) nanoparticles (NPs) with traces of zinc oxide (ZnO) were investigated against clinical strains of the respiratory pathogens Staphylococcus aureus and Pseudomonas aeruginosa. CIP-loaded PEtOx NPs retained their bactericidal activity within the formulations compared to free CIP drugs against these two pathogens, and bactericidal effects were enhanced with the inclusion of ZnO. PEtOx polymer and ZnO NPs did not show bactericidal activity alone or in combination against these pathogens. The formulations were tested to determine the cytotoxic and proinflammatory effects on airway epithelial cells derived from healthy donors (NHBE), donors with chronic obstructive pulmonary disease (COPD, DHBE), and a cell line derived from adults with cystic fibrosis (CFBE41o-) and macrophages from healthy adult controls (HCs), and those with either COPD or CF. NHBE cells demonstrated maximum cell viability (66%) against CIP-loaded PEtOx NPs with the half maximal inhibitory concentration (IC50) value of 50.7 mg/mL. CIP-loaded PEtOx NPs were more toxic to epithelial cells from donors with respiratory diseases than NHBEs, with respective IC50 values of 0.103 mg/mL for DHBEs and 0.514 mg/mL for CFBE41o- cells. However, high concentrations of CIP-loaded PEtOx NPs were toxic to macrophages, with respective IC50 values of 0.002 mg/mL for HC macrophages and 0.021 mg/mL for CF-like macrophages. PEtOx NPs, ZnO NPs, and ZnO-PEtOx NPs with no drug were not cytotoxic to any cells investigated. The in vitro digestibility of PEtOx and its NPs was investigated in simulated lung fluid (SLF) (pH 7.4). The analysed samples were characterized using Fourier transform infrared spectroscopy (ATR-FTIR), scanning electron microscopy (SEM), and UV-Vis spectroscopy. Digestion of PEtOx NPs commenced one week following incubation and was completely digested after four weeks; however, the original PEtOx was not digested after six weeks of incubation. The outcome of this study revealed that PEtOx polymer could be considered an efficient drug delivery carrier in respiratory linings, and CIP-loaded PEtOx NPs with traces of ZnO could be a promising addition to inhalable treatments against resistant bacteria with reduced toxicity.


Asunto(s)
Nanopartículas del Metal , Nanopartículas , Enfermedad Pulmonar Obstructiva Crónica , Óxido de Zinc , Humanos , Ciprofloxacina/farmacología , Óxido de Zinc/química , Antibacterianos/farmacología , Nanopartículas/química , Espectroscopía Infrarroja por Transformada de Fourier , Nanopartículas del Metal/química , Pruebas de Sensibilidad Microbiana
6.
Microbiol Spectr ; 11(1): e0263122, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36688638

RESUMEN

Cholera caused by pathogenic Vibrio cholerae is still considered one of the major health problems in developing countries including those in Asia and Africa. Australia is known to have unique V. cholerae strains in Queensland waterways, resulting in sporadic cholera-like disease being reported in Queensland each year. We conducted virulence and antimicrobial genetic characterization of O1 and non-O1, non-O139 V. cholerae (NOVC) strains (1983 to 2020) from Queensland with clinical significance and compared these to environmental strains that were collected as part of a V. cholerae monitoring project in 2012 of Queensland waterways. In this study, 87 V. cholerae strains were analyzed where O1 (n = 5) and NOVC (n = 54) strains from Queensland and international travel-associated NOVC (n = 2) (61 in total) strains were sequenced, characterized, and compared with seven previously sequenced O1 strains and 18 other publicly available NOVC strains from Australia and overseas to visualize the genetic context among them. Of the 61 strains, three clinical and environmental NOVC serogroup strains had cholera toxin-producing genes, namely, the CTX phage (identified in previous outbreaks) and the complete Vibrio pathogenicity island 1. Phylogenetic analysis based on core genome analysis showed more than 10 distinct clusters and interrelatedness between clinical and environmental V. cholerae strains from Australia. Moreover, 30 (55%) NOVC strains had the cholix toxin gene (chxA) while only 11 (20%) strains had the mshA gene. In addition, 18 (34%) NOVC strains from Australia had the type three secretion system and discrete expression of type six secretion system genes. Interestingly, four NOVC strains from Australia and one NOVC strain from Indonesia had intSXT, a mobile genetic element. Several strains were found to have beta-lactamase (blaCARB-9) and chloramphenicol acetyltransferase (catB9) genes. Our study suggests that Queensland waterways can harbor highly divergent V. cholerae strains and serve as a reservoir for various V. cholerae-associated virulence genes which could be shared among O1 and NOVC V. cholerae strains via mobile genetic elements or horizontal gene transfer. IMPORTANCE Australia has its own V. cholerae strains, both toxigenic and nontoxigenic, that are associated with cholera disease. This study aimed to characterize a collection of clinical and environmental NOVC strains from Australia to understand their virulence and antimicrobial resistance profile and to place strains from Australia in the genetic context of international strains. The findings from this study suggest the toxigenic V. cholerae strains in the Queensland River water system are of public health concern. Therefore, ongoing monitoring and genomic characterization of V. cholerae strains from the Queensland environment are important and would assist public health departments to track the source of cholera infection early and implement prevention strategies for future outbreaks. Understanding the genomics of V. cholerae could also inform the natural ecology and evolution of this bacterium in natural environments.


Asunto(s)
Cólera , Vibrio cholerae no O1 , Humanos , Cólera/epidemiología , Cólera/microbiología , Vibrio cholerae no O1/genética , Virulencia/genética , Antibacterianos/farmacología , Serogrupo , Filogenia , Viaje , Variación Genética , Farmacorresistencia Bacteriana/genética
7.
Microbiol Spectr ; 11(1): e0361722, 2023 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-36533913

RESUMEN

Vibrio cholerae O1 is the causative agent of cholera, a severe diarrheal disease which can cause death if left untreated. In this study, a collection of clinical and environmental V. cholerae serogroup O1 isolates from Australia (1977 to 1987) (from local cases and cases acquired through international travel) and publicly available international isolates were characterized for genotypic features (virulence genes, mobile genetic elements [MGEs], and antimicrobial resistance gene profiles). Whole-genome sequencing (WGS) was used to investigate and compare the genetic relatedness between the 44 Australian and nine travel-associated isolates and the 60 publicly available international V. cholerae sequences representing pre-seventh-pandemic (pre-7PET) isolates and different waves of 7PET isolates. In this study, 36 (81%) Australian clinical and aquatic isolates harbored the cholera toxin-producing genes located in the CTX bacteriophage region. All the Australian environmental and clinical isolates lacked the seventh-pandemic virulence-associated genomic islands (VSP-I and -II). In silico multilocus sequence typing (MLST) classified all nine internationally acquired isolates as sequence type 69 (ST69), 36 clinical and aquatic isolates as ST70, and eight isolates from Australia as ST71. Most of the nontoxigenic clinical and aquatic isolates of ST71 had diverse genetic variations compared to ST70 Australian strains. The antimicrobial resistance-associated genes gyrA, parC, and parE had no mutations in all the environmental and clinical isolates from Australia. The SXT genetic element and class 1 integron gene sequences were not detected in Australian strains. Moreover, in this study, a Bayesian evolutionary study suggests that two distinct lineages of ST71 (new set of strains) and ST70 strains were prevalent around similar times in Australia, in ~1973 and 1969. IMPORTANCE Australia has its own indigenous V. cholerae strains, both toxigenic and nontoxigenic, that are associated with disease. Exotic strains are also detected in Australian patients returning from overseas travel. The clinical and aquatic V. cholerae O1 toxin gene-positive isolates from Australia responsible for cases in 1977 to 1987 were linked to acquisition from Queensland waterways but until now had not been characterized genetically. It is important to determine the genetic relatedness of Australian strains to international strains to assist in understanding their origin. This is the first extensive study to provide sequences and genomic analysis focused on toxigenic O1 V. cholerae clinical and environmental strains from Australia and its possible evolutionary relationship with other publicly available pre-7PET and 7PET V. cholerae strains. It is important to understand the population genetics of Australian V. cholerae from a public health perspective to assist in devising control measures and management plans for reducing V. cholerae exposure in Australia, given previous Australian disease clusters.


Asunto(s)
Cólera , Vibrio cholerae O1 , Humanos , Vibrio cholerae O1/genética , Tipificación de Secuencias Multilocus , Teorema de Bayes , Viaje , Australia/epidemiología , Cólera/epidemiología , Genómica
8.
Intensive Crit Care Nurs ; 75: 103364, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36528456

RESUMEN

OBJECTIVE: To test the feasibility of conducting a randomised controlled trial to evaluate the impact of a closed-loop blood sampling system and blood conservation bundle. METHODS: Single site, parallel group, pilot randomised control trial comparing open system sampling to closed system sampling and conservation bundle aligned with national guidelines. Randomisation sequence was generated by an independent statistician and allocation concealment maintained via sealed opaque envelopes. The study setting was the general intensive care unit of a major metropolitan public hospital in Queensland, Australia. Participants were ≥ 18 years who had an arterial catheter inserted in intensive care. Main outcome measures included trial feasibility, blood sample loss, haematocrit (HCT) change, and packed red blood cell transfusion use. RESULTS: Eighty patients were randomised (n = 39 open group, n = 41 closed group). Characteristics in each group were equal at baseline with overall median age 60 years (IQR 48.6-70.4), 58 % male, and median APACHE II score 16 (IQR 11-22). The proportion of patients eligible was 29 % and missed eligible was 65 %. Otherwise, feasibility criteria were met with proportion of eligible patients agreeing to enrolment 99 %, 100 % of patients receiving allocated treatment; only 1 % of data missing. Analysis demonstrated a significant reduction in mean daily blood sample losses (open 32.7 (SD 1.58) mL vs closed 15.5 (SD 5.79) mL, t = -8.454, df = 78, p < 0.001). CONCLUSIONS: A large, multi-site trial is feasible with enhanced eligibility criteria, increased recruitment support. The intervention reduced daily blood sample volumes and transfusion use. Further trials are required to provide both effectiveness and implementation outcomes.


Asunto(s)
Cuidados Críticos , Unidades de Cuidados Intensivos , Humanos , Masculino , Persona de Mediana Edad , Femenino , Proyectos Piloto , Australia , Queensland
9.
Int Forum Allergy Rhinol ; 13(6): 979-988, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36515012

RESUMEN

BACKGROUND: Chronic or recurrent rhinosinusitis without polyps (CRSsNP) is characterized by a persistent inflammation of the sinonasal mucosa. The underlying cause is unclear but increasing interest has been directed toward changes in the sinonasal microbiome as a potential driver. METHODS: Twenty-two patients diagnosed with CRSsNP were treated with antibiotics for 13 days, followed by 5 consecutive days of nasal microbiome transplants from healthy donors. Outcome measures were 22-item Sino-Nasal Outcome Test (SNOT-22) questionnaire, total nasal symptom score (TNSS), endoscopic grading, 16S ribosomal RNA (rRNA) next generation sequencing (microbiome analysis), and nasal lavage fluid analysis of inflammatory cytokines. Patients were examined at the start of the study and after antibiotic treatment as well as 10 days and 3 months after the transplant series. RESULTS: At the end of the study, patients reported significantly reduced SNOT-22 scores and microbiome analysis showed significantly increased abundance and diversity. No significant change was observed for TNSS or endoscopic scoring. CONCLUSION: Nasal microbiome transplants obtained from healthy individuals and administered as nasal lavages to patients with CRSsNP are feasible. The patients reported significant and lasting reduction of symptoms and these findings were associated with a lasting increase in abundance and diversity of the local bacterial flora. The observations, which need to be confirmed by randomized controlled trials, may constitute a new treatment avenue for these difficult to treat patients where antibiotics only provide short lasting symptom control.


Asunto(s)
Microbiota , Pólipos Nasales , Rinitis , Sinusitis , Humanos , Rinitis/cirugía , Rinitis/complicaciones , Nariz , Sinusitis/cirugía , Sinusitis/complicaciones , Pólipos Nasales/diagnóstico , Enfermedad Crónica , Antibacterianos/uso terapéutico
10.
Front Cell Dev Biol ; 9: 641921, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34395413

RESUMEN

The endometrial cavity is an upper genital tract site previously thought as sterile, however, advances in culture-independent, next-generation sequencing technology have revealed that this low-biomass site harbors a rich microbial community which includes multiple Lactobacillus species. These bacteria are considered to be the most abundant non-pathogenic genital tract commensals. Next-generation sequencing of the female lower genital tract has revealed significant variation amongst microbial community composition with respect to Lactobacillus sp. in samples collected from healthy women and women with urogenital conditions. The aim of this study was to evaluate our ability to characterize members of the genital tract microbial community to species-level taxonomy using variable regions of the 16S rRNA gene. Samples were interrogated for the presence of microbial DNA using next-generation sequencing technology that targets the V5-V8 regions of the 16S rRNA gene and compared to speciation using qPCR. We also performed re-analysis of published data using alternate variable regions of the 16S rRNA gene. In this analysis, we explore next-generation sequencing of clinical genital tract isolates as a method for high throughput identification to species-level of key Lactobacillus sp. Data revealed that characterization of genital tract taxa is hindered by a lack of a consensus protocol and 16S rRNA gene region target allowing comparison between studies.

11.
Sci Rep ; 11(1): 10722, 2021 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-34021227

RESUMEN

Staphylococcus aureus infections of the central nervous system are serious and can be fatal. S. aureus is commonly present in the nasal cavity, and after injury to the nasal epithelium it can rapidly invade the brain via the olfactory nerve. The trigeminal nerve constitutes another potential route of brain infection. The glia of these nerves, olfactory ensheathing cells (OECs) and trigeminal nerve Schwann cells (TgSCs), as well as astrocytes populating the glia limitans layer, can phagocytose bacteria. Whilst some glial responses to S. aureus have been studied, the specific responses of different glial types are unknown. Here, we compared how primary mouse OECs, TgSCs, astrocytes and microglia responded to S. aureus. All glial types internalized the bacteria within phagolysosomes, and S. aureus-conjugated BioParticles could be tracked with subtle but significant differences in time-course of phagocytosis between glial types. Live bacteria could be isolated from all glia after 24 h in culture, and microglia, OECs and TgSCs exhibited better protection against intracellular S. aureus survival than astrocytes. All glial types responded to the bacteria by cytokine secretion. Overall, OECs secreted the lowest level of cytokines, suggesting that these cells, despite showing strong capacity for phagocytosis, have immunomodulatory functions that can be relevant for neural repair.


Asunto(s)
Sistema Nervioso Central/microbiología , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Neuroglía/microbiología , Sistema Nervioso Periférico/microbiología , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus/fisiología , Biomarcadores , Células Cultivadas , Sistema Nervioso Central/inmunología , Citocinas/metabolismo , Resistencia a la Enfermedad/inmunología , Interacciones Huésped-Patógeno/inmunología , Microglía , Neuroglía/inmunología , Neuroglía/metabolismo , Sistema Nervioso Periférico/inmunología , Fagocitosis/inmunología , Infecciones Estafilocócicas/inmunología
12.
Infect Genet Evol ; 89: 104726, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33482361

RESUMEN

Vibrio cholerae is the etiological agent of cholera, a severe diarrheal disease, which can occur as either an epidemic or sporadic disease. Cholera pandemic-causing V. cholerae O1 and O139 serogroups originated from the Indian subcontinent and spread globally and millions of lives are lost each year, mainly in developing and underdeveloped countries due to this disease. V. cholerae O1 is further classified as classical and El Tor biotype which can produce biotype specific cholera toxin (CT). Since 1961, the current seventh pandemic El Tor strains replaced the sixth pandemic strains resulting in the classical biotype strain that produces classical CT. The ongoing evolution of Atypical El Tor V. cholerae srains encoding classical CT is of global concern. The severity in the pathophysiology of these Atypical El Tor strains is significantly higher than El Tor or classical strains. Pathogenesis of V. cholerae is a complex process that involves coordinated expression of different sets of virulence-associated genes to cause disease. We are yet to understand the complete virulence profile of V. cholerae, including direct and indirect expression of genes involved in its survival and stress adaptation in the host. In recent years, whole genome sequencing has paved the way for better understanding of the evolution and strain distribution, outbreak identification and pathogen surveillance for the implementation of direct infection control measures in the clinic against many infectious pathogens including V. cholerae. This review provides a synopsis of recent studies that have contributed to the understanding of the evolution, distribution and genetics of the seventh pandemic Atypical El Tor V. cholerae strains.


Asunto(s)
Cólera/epidemiología , Evolución Molecular , Vibrio cholerae/genética , Cólera/microbiología , Genotipo , Humanos
13.
Front Microbiol ; 11: 566415, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33013798

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australian STEC epidemiology differs from many other countries, as severe outbreaks and HUS cases appear to be more often associated with non-O157 serogroups. It is not known why Australian strains of O157 STEC might differ in virulence to international strains. Here we investigate the reduced virulence of Australian strains. Multiple genetic analyses were performed, including SNP-typing, to compare the core genomes of the Australian to the international isolates, and accessory genome analysis to determine any significant differences in gene presence/absence that could be associated with their phenotypic differences in virulence. The most distinct difference between the isolates was the absence of the stx2a gene in all Australian isolates, with few other notable differences observed in the core and accessory genomes of the O157 STEC isolates analyzed in this study. The presence of stx1a in most Australian isolates was another notable observation. Acquisition of stx2a seems to coincide with the emergence of highly pathogenic STEC. Due to the lack of other notable genotypic differences observed between Australian and international isolates characterized as highly pathogenic, this may be further evidence that the absence of stx2a in Australian O157 STEC could be a significant characteristic defining its mild virulence. Further work investigating the driving force(s) behind Stx prophage loss and acquisition is needed to determine if this potential exists in Australian O157 isolates.

14.
Environ Res ; 191: 110092, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32861728

RESUMEN

Wastewater-based epidemiology (WBE) demonstrates potential for COVID-19 community transmission monitoring; however, data on the stability of SARS-CoV-2 RNA in wastewater are needed to interpret WBE results. The decay rates of RNA from SARS-CoV-2 and a potential surrogate, murine hepatitis virus (MHV), were investigated by reverse transcription-quantitative polymerase chain reaction (RT-qPCR) in untreated wastewater, autoclaved wastewater, and dechlorinated tap water stored at 4, 15, 25, and 37 °C. Temperature, followed by matrix type, most greatly influenced SARS-CoV-2 RNA first-order decay rates (k). The average T90 (time required for 1-log10 reduction) of SARS-CoV-2 RNA ranged from 8.04 to 27.8 days in untreated wastewater, 5.71 to 43.2 days in autoclaved wastewater, and 9.40 to 58.6 days in tap water. The average T90 for RNA of MHV at 4 to 37 °C ranged from 7.44 to 56.6 days in untreated wastewater, 5.58-43.1 days in autoclaved wastewater, and 10.9 to 43.9 days in tap water. There was no statistically significant difference between RNA decay of SARS-CoV-2 and MHV; thus, MHV is suggested as a suitable persistence surrogate. Decay rate constants for all temperatures were comparable across all matrices for both viral RNAs, except in untreated wastewater for SARS-CoV-2, which showed less sensitivity to elevated temperatures. Therefore, SARS-CoV-2 RNA is likely to persist long enough in untreated wastewater to permit reliable detection for WBE application.


Asunto(s)
Infecciones por Coronavirus , Virus de la Hepatitis Murina , Pandemias , Neumonía Viral , Animales , Betacoronavirus , COVID-19 , Humanos , Ratones , SARS-CoV-2 , Aguas Residuales , Monitoreo Epidemiológico Basado en Aguas Residuales
15.
BMC Bioinformatics ; 19(Suppl 20): 509, 2018 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-30577803

RESUMEN

BACKGROUND: Sequencing highly-variable 16S regions is a common and often effective approach to the study of microbial communities, and next-generation sequencing (NGS) technologies provide abundant quantities of data for analysis. However, the speed of existing analysis pipelines may limit our ability to work with these quantities of data. Furthermore, the limited coverage of existing 16S databases may hamper our ability to characterise these communities, particularly in the context of complex or poorly studied environments. RESULTS: In this article we present the SigClust algorithm, a novel clustering method involving the transformation of sequence reads into binary signatures. When compared to other published methods, SigClust yields superior cluster coherence and separation of metagenomic read data, while operating within substantially reduced timeframes. We demonstrate its utility on published Illumina datasets and on a large collection of labelled wound reads sourced from patients in a wound clinic. The temporal analysis is based on tracking the dominant clusters of wound samples over time. The analysis can identify markers of both healing and non-healing wounds in response to treatment. Prominent clusters are found, corresponding to bacterial species known to be associated with unfavourable healing outcomes, including a number of strains of Staphylococcus aureus. CONCLUSIONS: SigClust identifies clusters rapidly and supports an improved understanding of the wound microbiome without reliance on a reference database. The results indicate a promising use for a SigClust-based pipeline in wound analysis and prediction, and a possible novel method for wound management and treatment.


Asunto(s)
Análisis de Datos , Metagenómica/métodos , Algoritmos , Análisis por Conglomerados , Humanos , Microbiota/genética
16.
Future Microbiol ; 13: 1355-1361, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-30256134

RESUMEN

AIM: To determine whether cultivation-dependent and -independent analyses identifying fallopian tube bacteria were associated with visually observable microbial cells in situ using scanning electron microscopy. PATIENTS: Fallopian tubes were collected from pre- and postmenopausal women undergoing salpingectomies for benign disease or as prophylaxis. MATERIALS & METHODS: Fresh fallopian tube samples were processed for scanning electron microscopy to characterize fallopian tube ultrastructure. Histopathology was used to exclude fallopian tube abnormalities and for menstrual cycle staging of the endometrium. RESULTS: Scanning electron microscopy revealed observable microbial cells in fallopian tube samples. CONCLUSION: In the absence of inflammatory pathology, the fallopian tube harbors a visually observable microbial population, which correlates with cultivation-dependent and -independent data, further refuting the sterility of this anatomical niche.


Asunto(s)
Bacterias/aislamiento & purificación , ADN Bacteriano/genética , Trompas Uterinas/microbiología , Microbiota , Bacterias/clasificación , Bacterias/genética , Bacterias/ultraestructura , Trompas Uterinas/patología , Femenino , Humanos
17.
Oncotarget ; 9(30): 21541-21551, 2018 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-29765558

RESUMEN

OBJECTIVE: There is a paucity of data characterizing the microbiota of the female upper genital tract, which controversially is described as a sterile site. We examine whether the fallopian tube harbours an endogenous microbial community. DESIGN: This prospective study collected from women undergoing total hysterectomy or salpingectomy-oophorectomy. SETTING: Private hospital gynaecology department. PATIENTS: Fallopian tubes were collected from women diagnosed with benign disease or for prophylaxis. INTERVENTIONS: Samples were interrogated for the presence of microbial DNA using a next generation sequencing technology approach to exploit the V5 to V9 regions of the 16S rRNA gene. MAIN OUTCOME MEASURES: The fallopian tube microbiota was characterized using traditional culture techniques and next generation sequencing. RESULTS: Bacteria were isolated from 50% of cultured samples, and 100% of samples returned positive PCR results. Only 68% of the culture isolates could be confidently identified using automated diagnostic equipment in a clinical microbiology laboratory. Monomicrobial communities were identified only for cultured isolates (50%). Pyrosequencing revealed that all communities were polymicrobial. Lactobacillus spp. were not present in all groups, nor were they the most dominant isolates. Distinct differences in the microbial communities were evident for left compared to right fallopian tubes, ampulla versus isthmus, pre- and post- menopausal tissue, and in secretory phase fallopian tubes with and without Mirena intrauterine devices in situ (all p < 0.05). CONCLUSION: The female upper genital tract is not sterile. Distinct microbial community profiles in the fallopian tubes of healthy women suggest that this genital tract site supports an endogenous microbiota.

18.
J Clin Microbiol ; 56(4)2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29367299

RESUMEN

Shiga toxin-producing Escherichia coli (STEC) is a foodborne pathogen, and serotype O157:H7 is typically associated with severe disease. Australia is unique in its STEC epidemiology, as severe cases are typically associated with non-O157 serogroups, and locally acquired O157 isolates are H-negative/nonmotile. The H-negative phenotype and reduced severity of disease compared to that associated with H7/motile strains are distinct features of Australian O157 strains, but the molecular mechanism behind this phenotype has not been reported. Accurate characterization of the H-negative phenotype is important in epidemiological surveillance of STEC. Serotyping is moving away from phenotype-based methods, as next generation sequencing allows rapid extrapolation of serotype through in silico detection of the O-antigen processing genes, wzx, wzy, wzm, and wzt, and the H-antigen gene, fliC The detection and genotyping of fliC alone is unable to determine the motility of the strain. Typically, most Australian O157:H-negative strains carry an H7 genotype yet phenotypically are nonmotile; thus, many are mischaracterized as H7 strains by in silico serotyping tools. Comparative genomic analysis of flagellar genes between Australian and international isolates was performed and an insertion at nucleotide (nt) 125 in the flgF gene was identified in H-negative isolates. Chi-square results showed that this insertion was significantly associated with the H-negative phenotype (P < 0.0001). Phylogenetic analysis was also completed and showed that the Australian H-negative isolates with the insertion in flgF represent a clade within the O157 serogroup, distinct from O157:H7 serotypes. This study provides a genetic target for inferring the nonmotile phenotype of Australian O157 STEC, which increases the predictive value of in silico serotyping.


Asunto(s)
Fenotipo , Toxinas Shiga/genética , Escherichia coli Shiga-Toxigénica/clasificación , Adhesinas Bacterianas/genética , Antígenos Bacterianos/genética , Australia/epidemiología , Infecciones por Escherichia coli/epidemiología , Infecciones por Escherichia coli/microbiología , Escherichia coli O157 , Proteínas de Escherichia coli/genética , Flagelina/genética , Genoma Bacteriano , Genotipo , Humanos , Movimiento , Antígenos O/genética , Filogenia , Prevalencia , Serogrupo , Serotipificación , Escherichia coli Shiga-Toxigénica/genética , Escherichia coli Shiga-Toxigénica/aislamiento & purificación , Secuenciación Completa del Genoma
19.
Antonie Van Leeuwenhoek ; 111(6): 933-943, 2018 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-29299770

RESUMEN

This study aimed to characterise the microbial community within the endometrial cavity and endocervix in women with menorrhagia or dysmenorrhea. Paired endocervical and endometrial biopsy samples were collected from women undergoing operative hysteroscopy and/or laparoscopy. Samples were cohorted based on pathology, indications for surgery, and histological dating of the endometrium. Samples were interrogated for the presence of microbial DNA using a two-step next generation sequencing technology approach to exploit the V5-V8 regions of the 16S rRNA gene. Pyrosequencing revealed that the endocervix and endometrium share a minor microbial community, but that each site harbours a separate and distinct microbial population (p = 0.024). This was also the case for women with menorrhagia and dysmenorrhea (p = 0.017). Lactobacillus spp. were the most abundant microbial taxa present in 50% of the cohorts, and across all endocervical groups. Members of the genera Prevotella, Fusobacterium and Jonquetella were the most abundant taxa identified in samples collected from nulliparous women. It can be concluded that the female upper genital tract is not sterile. Microbial community profiling revealed differences in the endometrial microbial community profiles for: (1) the endocervix compared to the endometrium, and (2), women with menorrhagia versus dysmenorrhea. The distinct microbial community profiles in these women may offer insight into the pathology and clinical management of dysfunctional menstrual bleeding.


Asunto(s)
Endometrio/microbiología , Dismenorrea/microbiología , Femenino , Humanos , Lactobacillus/aislamiento & purificación , Menorragia/microbiología , ARN Ribosómico 16S/genética
20.
FEMS Microbiol Lett ; 364(16)2017 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-28854710

RESUMEN

Pseudomonas aeruginosa is a Gram-negative pathogen and the major cause of mortality in patients with cystic fibrosis. The mechanisms that P. aeruginosa strains use to regulate intracellular zinc have an effect on infection, antibiotic resistance and the propensity to form biofilms. However, zinc homeostasis in P. aeruginosa strains of variable infectivity has not been compared. In this study, zinc homeostasis in P. aeruginosa Trent, a highly infectious clinical strain, was compared to that of a laboratory P. aeruginosa strain, ATCC27853. Trent was able to tolerate higher concentrations of additional zinc in rich media than ATCC27853. Further, pre-adaptation to additional zinc enhanced the growth of Trent at non-inhibitory concentrations but the impact of pre-adaption on the growth of ATCC27853 under the same conditions was minimal. The results establish clear differences in zinc-induced responses in Trent and ATCC27853, and how zinc homeostasis can be a promising target for the development of novel antimicrobial strategies for P. aeruginosa infection in cystic fibrosis patients.


Asunto(s)
Fibrosis Quística/microbiología , Infecciones por Pseudomonas/microbiología , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Zinc/metabolismo , Biopelículas , Homeostasis , Humanos , Pseudomonas aeruginosa/efectos de los fármacos , Sulfato de Zinc/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...