RESUMEN
This study introduces a novel heteroleptic indium complex, which incorporates an amidinate ligand, serving as a high-temperature atomic layer deposition (ALD) precursor. The most stable structure was determined using density functional theory and synthesized, demonstrating thermal stability up to 375 °C. We fabricated indium oxide thin-film transistors (In2O3TFTs) prepared with DBADMI precursor using ALD in wide range of window processing temperature of 200 °C, 300 °C, and 350 °C with an ozone (O3) as the source. The growth per cycle of ALD ranged from 0.06 to 0.1 nm cycle-1at different deposition temperatures. X-ray diffraction and transmission electron microscopy were employed to analyze the crystalline structure as it relates to the deposition temperature. At a relatively low deposition temperature of 200 °C, an amorphous morphology was observed, while at 300 °C and 350 °C, crystalline structures were evident. Additionally, x-ray photoelectron spectroscopy analysis was conducted to identify the In-O and OH-related products in the film. The OH-related product was found to be as low as 1% with an increase the deposition temperature. Furthermore, we evaluated In2O3TFTs and observed an increase in field-effect mobility, with minimal change in the threshold voltage (Vth), at 200 °C, 300 °C, and 350 °C. Consequently, the DBADMI precursor, given its stability at highdeposition temperatures, is ideal for producing high-quality films and stable crystalline phases, with wide processing temperature range makeing it suitable for various applications.
RESUMEN
Vertical channel thin film transistors (VTFTs) have been expected to be exploited as one of the promising three-dimensional devices demanding a higher integration density owing to their structural advantages such as small device footprints. However, the VTFTs have suffered from the back-channel effects induced by the pattering process of vertical sidewalls, which critically deteriorate the device reliability. Therefore, to reduce the detrimental back-channel effects has been one of the most urgent issues for enhancing the device performance of VTFTs. Here we show a novel strategy to introduce an In-Ga-Zn-O (IGZO) bilayer channel configuration, which was prepared by atomic-layer deposition (ALD), in terms of structural and electrical passivation against the back-channel effects. Two-dimensional electron gas was effectively employed for improving the operational reliability of the VTFTs by inducing strong confinement of conduction electrons at heterojunction interfaces. The IGZO bilayer channel structure was composed of 3 nm-thick In-rich prompt (In/Ga = 4.1) and 12 nm-thick prime (In/Ga = 0.7) layers. The VTFTs using bilayer IGZO channel showed high on/off ratio (4.8 × 109), low SS value (180 mV dec-1), and high current drivability (13.6µAµm-1). Interestingly, the strategic employment of bilayer channel configurations has secured excellent device operational stability representing the immunity against the bias-dependent hysteretic drain current and the threshold voltage instability of the fabricated VTFTs. Moreover, the threshold voltage shifts of the VTFTs could be suppressed from +5.3 to +2.6 V under a gate bias stress of +3 MV cm-1for 104s at 60 °C, when the single layer channel was replaced with the bilayer channel. As a result, ALD IGZO bilayer configuration could be suggested as a useful strategy to improve the device characteristics and operational reliability of VTFTs.
RESUMEN
Stretchable electronics have become essential for custom-built electronics, self-assembling robotics, and wearable devices. Although many stretchable electronics contain integrated systems, they still limit bulky connection systems. We introduce a new dual-functioned self-attachable and stretchable interface (SASI), allowing a direct and instant interconnection between rigid and soft electronics. The SASI consists of a sticky and stretchable substrate and surface-embedded serpentine conductors with the single-sided polyimide fabricated using the embedded transfer process. The adhesion property of the SASI is controlled by the mixed elastomer ratio. The resulting sticky and conductive SASI can instantly adhere to a metal surface and create conductive paths. The SASI serpentine conductors exhibit high stretchability (â¼290%) and provide self-attachable, re-attachable, and low-resistant electrical contacts (0.85 ohms in 0.25 mm2) between interfaces without pressure, heat, or extra solder. In addition, three-dimensional curved and modular electronics can be formed with the SASI by compiling functional blocks. SASI provides a novel strategy for assembling functional chips or modules for stretchable electronics, opening a path to onboard integrated electronics that are customizable by users for real-world stretchable electronics.
RESUMEN
Transistors with inorganic semiconductors have superior performance and reliability compared to organic transistors. However, they are unfavorable for building stretchable electronic products due to their brittle nature. Because of this drawback, they have mostly been placed on non-stretchable parts to avoid mechanical strain, burdening the deformable interconnects, which link these rigid parts, with the strain of the entire system. Integration density must therefore be sacrificed when stretchability is the first priority because the portion of stretchable wirings should be raised. In this study, we show high density integration of oxide thin film transistors having excellent performance and reliability by directly embedding the devices into stretchable serpentine strings to defeat such trade-off. The embedded transistors do not hide from deformation and endure strain up to 100% by themselves; thus, integration density can be enhanced without sacrificing the stretchability. We expect that our approach can create more compact stretchable electronics with high-end functionality than before.
RESUMEN
Roles of oxygen interstitial defects located in the In-Ga-Zn-O (IGZO) thin films prepared by atomic layer deposition were investigated with controlling the cationic compositions and gate-stack process conditions. It was found from the spectroscopic ellipsometry analysis that the excess oxygens increased with increasing the In contents within the IGZO channels. While the device using the IGZO channel with an In/Ga ratio of 0.2 did not show marked differences with the variations in the oxidant types during the gate-stack formation, the device characteristics were severely deteriorated with increasing the In/Ga ratio to 1.4, when the Al2O3 gate insulator (GI) was prepared with the H2O oxidants (H2O-Al2O3) due to a higher amount of excess oxygen in the channel. Additionally, during the deposition process of the Al-doped ZnO (AZO) gate electrode (GE) replacing from the indium-tin oxide (ITO) GE, the thermal annealing effect at 180 °C facilitated the passivation of oxygen vacancy and the strengthening of metal-oxygen bonding, which could stabilize the TFT operations. From these results, the gate-stack structure employing O3-processed Al2O3 GI (O3-Al2O3) and AZO GE (OA) was suggested to be most suitable for the device using IGZO channel with a higher In content. On the other hand, the device employing H2O-Al2O3 GI and AZO GE exhibited larger negative shifts of threshold voltage (VTH) under positive-bias-temperature stress (PBTS) condition than the device employing O3- Al2O3 GI and ITO GE due to larger hydrogen contents within the gate stacks. Anomalous negative shifts of VTH were accelerated with increasing the In contents of the IGZO channel. When the channel length of the fabricated device were scaled down to submicrometer regime, the OA gate stacks successfully alleviated the short-channel effects.
RESUMEN
Holographic projection displays provide high diffraction efficiency. However, they have a limited projection angle. This work proposes a holographic projection display with a wide angle, which gives an image of size 306mm×161mm at 700 mm and reduced speckle noise. The solution uses single Fourier lens imaging with a frequency filter and hologram generation utilizing complex coding and nonparaxial diffraction. The experiment was performed with a 4K phase-only spatial light modulator (SLM) to prove the high efficiency of the developed numerical tools. Optical reconstruction shows high resolution and high image quality achieved from a single frame. Hence, displaying video at a full frame rate of the SLM is possible.
RESUMEN
Rubrene-based electrochemiluminescence (r-ECL) cells with two different solvent systems is prepared, one in a co-solvent system with a mixture of 1,2-dichlorobenzene and propylene carbonate (DCB : PC, v/v 3 : 1) and another in a single solvent system of tetrahydrofuran (THF), as the medium to form a liquid-electrolyte (L-El). By simply changing the solvent systems, from the co-solvent DCB : PC (v/v 3 : 1) to the single solvent THF, with the same amount of electrochemiluminescent rubrene (5 mM) and Li-based salt, a dramatically enhanced brightness of over 30 cd m-2 is observed for the r-ECL cell in L-ElTHF which is approximately 7-times higher than the brightness of 5 cd m-2 observed for the r-ECL in L-ElDCB:PC(v/v 3:1).
RESUMEN
Thin-film transistor (TFT)-driven full-color organic light-emitting diodes (OLEDs) with vertically stacked structures are developed herein using photolithography processes, which allow for high-resolution displays of over 2,000 pixels per inch. Vertical stacking of OLEDs by the photolithography process is technically challenging, as OLEDs are vulnerable to moisture, oxygen, solutions for photolithography processes, and temperatures over 100 °C. In this study, we develop a low-temperature processed Al2O3/SiNx bilayered protection layer, which stably protects the OLEDs from photolithography process solutions, as well as from moisture and oxygen. As a result, transparent intermediate electrodes are patterned on top of the OLED elements without degrading the OLED, thereby enabling to fabricate the vertically stacked OLED. The aperture ratio of the full-color-driven OLED pixel is approximately twice as large as conventional sub-pixel structures, due to geometric advantage, despite the TFT integration. To the best of our knowledge, we first demonstrate the TFT-driven vertically stacked full-color OLED.
RESUMEN
The ability to image pressure distribution over complex three-dimensional surfaces would significantly augment the potential applications of electronic skin. However, existing methods show poor spatial and temporal fidelity due to their limited pixel density, low sensitivity, or low conformability. Here, we report an ultraflexible and transparent electroluminescent skin that autonomously displays super-resolution images of pressure distribution in real time. The device comprises a transparent pressure-sensing film with a solution-processable cellulose/nanowire nanohybrid network featuring ultrahigh sensor sensitivity (>5000 kPa-1) and a fast response time (<1 ms), and a quantum dot-based electroluminescent film. The two ultrathin films conform to each contact object and transduce spatial pressure into conductivity distribution in a continuous domain, resulting in super-resolution (>1000 dpi) pressure imaging without the need for pixel structures. Our approach provides a new framework for visualizing accurate stimulus distribution with potential applications in skin prosthesis, robotics, and advanced human-machine interfaces.
Asunto(s)
Ingeniería Biomédica/instrumentación , Presión , Piel/química , Dispositivos Electrónicos Vestibles , Técnicas Biosensibles/instrumentación , Conductividad Eléctrica , Humanos , Imagenología Tridimensional , Nanocables/químicaRESUMEN
For this research, we have developed key technologies for a 1.5 µm pixel pitch spatial light modulator (SLM) using Ge2Sb2Te5 (GST) phase change material. To uniformly modulate each pixel, we designed a lateral pixel structure in which a heating current flows through a bottom indium tin oxide layer. To check hologram reconstruction both after multilevel fabrication processes and before implementing full source and driver circuits, we fabricated an 8K×2K hologram on the topology by changing the GST film's phase using laser irradiation. To overcome the limitation of SLM size, we tested a physical tiling structure and found that flatness of tiled SLMs was the most important factor in the realization of holographic displays.
RESUMEN
Correction for 'Rewritable full-color computer-generated holograms based on color-selective diffractive optical components including phase-change materials' by Chi-Young Hwang et al., Nanoscale, 2018, DOI: 10.1039/c8nr04471f.
RESUMEN
We propose rewritable full-color computer-generated holograms (CGHs) based on color-selective diffraction using the diffractive optical component with the resonant characteristic. The structure includes an ultrathin layer of phase-change material Ge2Sb2Te5 (GST) on which a spatial binary pattern of amorphous and crystalline states can be recorded. The CGH patterns can be easily erased and rewritten by the pulsed ultraviolet laser writing technique owing to the thermally reconfigurable characteristic of GST. We experimentally demonstrate that the fabricated CGH, having a fine pixel pitch of 2 µm and a size of 32.8 × 32.8 mm2, reconstructs the three-dimensional holographic images. In addition, the feasibility of the rewritable property is verified by erasing and rewriting part of the CGH.
RESUMEN
A phase modulation device was proposed for the implementation of hologram image for display applications. A Ge2Sb2Te5 (GST) film as thin as 7 nm was prepared between the ITO films to form the cavities corresponding a unit pixel. Nitrogen was incorporated into the GST for improving the thermal stability of the GST active region. The effects of the nitrogen doping on the physical properties of GST was investigated with the variations in doping amounts. The nitrogen incorporation was found to reduce the surface micro-roughness and to improve the thermal stability of the GST even after the crystallization by effectively suppressing the excessive grain growth. As results, the number of repeatable operations for the fabricated phase modulation device was evidently improved from 10 to 69 cycles when a 2.7-at% nitrogen was doped into the GST.
RESUMEN
For environmental reason, buildings increasingly install smart windows, which can dim incoming daylight based on active electrochromic devices (ECDs). In this work, multi-layered graphene (MLG) was investigated as an ECD window electrode, to minimize carbon dioxide (CO2) emissions by decreasing the electricity consumption for building space cooling and heating and as an alternative to the transparent conductor tin-doped indium oxide (ITO) in order to decrease dependence on it. Various MLG electrodes with different numbers of graphene layers were prepared with environmentally friendly poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) to produce ECD cells. Tests demonstrated the reproducibility and uniformity in optical performance, as well as the flexibility of the ECD fabrication. With the optimized MLG electrode, the ECD cells exhibited a very fast switching response for optical changes from transparent to dark states of a few hundred msec.
RESUMEN
In this paper, we introduce a transparent fingerprint sensing system using a thin film transistor (TFT) sensor panel, based on a self-capacitive sensing scheme. An armorphousindium gallium zinc oxide (a-IGZO) TFT sensor array and associated custom Read-Out IC (ROIC) are implemented for the system. The sensor panel has a 200 × 200 pixel array and each pixel size is as small as 50 µm × 50 µm. The ROIC uses only eight analog front-end (AFE) amplifier stages along with a successive approximation analog-to-digital converter (SAR ADC). To get the fingerprint image data from the sensor array, the ROIC senses a capacitance, which is formed by a cover glass material between a human finger and an electrode of each pixel of the sensor array. Three methods are reviewed for estimating the self-capacitance. The measurement result demonstrates that the transparent fingerprint sensor system has an ability to differentiate a human finger's ridges and valleys through the fingerprint sensor array.
RESUMEN
Active matrix organic light-emitting diodes (AMOLEDs) are considered to be a core component of next-generation display technology, which can be used for wearable and flexible devices. Reliable thin-film transistors (TFTs) with high mobility are required to drive AMOLEDs. Recently, amorphous oxide TFTs, due to their high mobility, have been considered as excellent substitutes for driving AMOLEDs. However, the device instabilities of high-mobility oxide TFTs have remained a key issue to be used in production. In this paper, we present the charge-trapping and device instability mechanisms of high-mobility oxide TFTs with double active layers, using In-Zn-O (IZO) and Al-doped Sn-Zn-In-O (ATZIO) with various interfacial IZO thicknesses (0-6 nm). To this end, we employed microsecond fast current-voltage (I-V), single-pulsed I-V, transient current, and discharge current analysis. These alternating-current device characterization methodologies enable the extraction of various trap parameters and defect densities as well as the understanding of dynamic charge transport in double-active-layer TFTs. The results show that the number of defect sites decreases with an increase in the interfacial IZO thickness. From these results, we conclude that the interfacial IZO layer plays a crucial role in minimizing charge trapping in ATZIO TFTs.
RESUMEN
The development of digital holography is anticipated for the viewing of 3D images by reconstructing both the amplitude and phase information of the object. Compared to analog holograms written by a laser interference, digital hologram technology has the potential to realize a moving 3D image using a spatial light modulator. However, to ensure a high-resolution 3D image with a large viewing angle, the hologram panel requires a near-wavelength scale pixel pitch with a sufficient large numbers of pixels. In this manuscript, we demonstrate a digital hologram panel based on a chalcogenide phase-change material (PCM) which has a pixel pitch of 1 µm and a panel size of 1.6 × 1.6 cm2. A thin film of PCM encapsulated by dielectric layers can be used for the hologram panel by means of excimer laser lithography. By tuning the thicknesses of upper and lower dielectric layers, a color-selective diffraction panel is demonstrated since a thin film resonance caused by dielectric can affect to the absorption and diffraction spectrum of the proposed hologram panel. We also show reflection color of a small active region (1 µm × 4 µm) made by ultra-thin PCM layer can be electrically changed.
RESUMEN
Graphene has attracted considerable attention as a next-generation transparent conducting electrode, because of its high electrical conductivity and optical transparency. Various optoelectronic devices comprising graphene as a bottom electrode, such as organic light-emitting diodes (OLEDs), organic photovoltaics, quantum-dot LEDs, and light-emitting electrochemical cells, have recently been reported. However, performance of optoelectronic devices using graphene as top electrodes is limited, because the lamination process through which graphene is positioned as the top layer of these conventional OLEDs is a lack of control in the surface roughness, the gapless contact, and the flexion bonding between graphene and organic layer of the device. Here, a multilayered graphene (MLG) as a top electrode is successfully implanted, via dry bonding, onto the top organic layer of transparent OLED (TOLED) with flexion patterns. The performance of the TOLED with MLG electrode is comparable to that of a conventional TOLED with a semi-transparent thin-Ag top electrode, because the MLG electrode makes a contact with the TOLED with no residue. In addition, we successfully fabricate a large-size transparent segment panel using the developed MLG electrode. Therefore, we believe that the flexion bonding technology presented in this work is applicable to various optoelectronic devices.
RESUMEN
Nonvolatile memory thin-film transistors (TFTs) fabricated on paper substrates were proposed as one of the eco-friendly electronic devices. The gate stack was composed of chicken albumen gate insulator and In-Ga-Zn-O semiconducting channel layers. All the fabrication processes were performed below 120 °C. To improve the process compatibility of the synthethic paper substrate, an Al2O3 thin film was introduced as adhesion and barrier layers by atomic layer deposition. The dielectric properties of biomaterial albumen gate insulator were also enhanced by the preparation of Al2O3 capping layer. The nonvolatile bistabilities were realized by the switching phenomena of residual polarization within the albumen thin film. The fabricated device exhibited a counterclockwise hysteresis with a memory window of 11.8 V, high on/off ratio of approximately 1.1 × 10(6), and high saturation mobility (µsat) of 11.5 cm(2)/(V s). Furthermore, these device characteristics were not markedly degraded even after the delamination and under the bending situration. When the curvature radius was set as 5.3 cm, the ION/IOFF ratio and µsat were obtained to be 5.9 × 10(6) and 7.9 cm(2)/(V s), respectively.
Asunto(s)
Óxido de Aluminio/química , Ovalbúmina/química , Papel , Transistores Electrónicos , Animales , Pollos , Electricidad , Diseño de Equipo , Microscopía de Fuerza Atómica , Ovalbúmina/metabolismo , Polipropilenos/químicaRESUMEN
Top-gate structured thin film transistors (TFTs) using In-Ga-Zn-O (IGZO) and In-Ga-O (IGO) channel compositions were investigated to reveal a feasible origin for degradation phenomenon under drain bias stress (DBS). DBS-driven instability in terms of V(TH) shift, deviation of the SS value, and increase in the on-state current were detected only for the IGZO-TFT, in contrast to the IGO-TFT, which did not demonstrate V(TH) shift. These behaviors were visually confirmed via nanoscale transmission electron microscopy and energy-dispersive x-ray spectroscopy observations. To understand the degradation mechanism, we performed ab initio molecular dynamic simulations on the liquid phases of IGZO and IGO. The diffusivities of Ga and In atoms were enhanced in IGZO, confirming the degradation mechanism to be increased atomic diffusion.