Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(16): 10758-10767, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38598699

RESUMEN

Neural networks are increasingly used to solve optimization problems in various fields, including operations research, design automation, and gene sequencing. However, these networks face challenges due to the nondeterministic polynomial time (NP)-hard issue, which results in exponentially increasing computational complexity as the problem size grows. Conventional digital hardware struggles with the von Neumann bottleneck, the slowdown of Moore's law, and the complexity arising from heterogeneous system design. Two-dimensional (2D) memristors offer a potential solution to these hardware challenges, with their in-memory computing, decent scalability, and rich dynamic behaviors. In this study, we explore the use of nonvolatile 2D memristors to emulate synapses in a discrete-time Hopfield neural network, enabling the network to solve continuous optimization problems, like finding the minimum value of a quadratic polynomial, and tackle combinatorial optimization problems like Max-Cut. Additionally, we coupled volatile memristor-based oscillators with nonvolatile memristor synapses to create an oscillatory neural network-based Ising machine, a continuous-time analog dynamic system capable of solving combinatorial optimization problems including Max-Cut and map coloring through phase synchronization. Our findings demonstrate that 2D memristors have the potential to significantly enhance the efficiency, compactness, and homogeneity of integrated Ising machines, which is useful for future advances in neural networks for optimization problems.

2.
Adv Mater ; 34(6): e2106625, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34825405

RESUMEN

Conventional gating in transistors uses electric fields through external dielectrics that require complex fabrication processes. Various optoelectronic devices deploy photogating by electric fields from trapped charges in neighbor nanoparticles or dielectrics under light illumination. Orbital gating driven by giant Stark effect is demonstrated in tunneling phototransistors based on 2H-MoTe2 without using external gating bias or slow charge trapping dynamics in photogating. The original self-gating by light illumination modulates the interlayer potential gradient by switching on and off the giant Stark effect where the dz 2-orbitals of molybdenum atoms play the dominant role. The orbital gating shifts the electronic bands of the top atomic layer of the MoTe2 by up to 100 meV, which is equivalent to modulation of a carrier density of 7.3 × 1011 cm-2 by electrical gating. Suppressing conventional photoconductivity, the orbital gating in tunneling phototransistors achieves low dark current, practical photoresponsivity (3357 AW-1 ), and fast switching time (0.5 ms) simultaneously.

3.
Nat Commun ; 10(1): 3161, 2019 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-31320651

RESUMEN

The large-scale crossbar array is a promising architecture for hardware-amenable energy efficient three-dimensional memory and neuromorphic computing systems. While accessing a memory cell with negligible sneak currents remains a fundamental issue in the crossbar array architecture, up-to-date memory cells for large-scale crossbar arrays suffer from process and device integration (one selector one resistor) or destructive read operation (complementary resistive switching). Here, we introduce a self-selective memory cell based on hexagonal boron nitride and graphene in a vertical heterostructure. Combining non-volatile and volatile memory operations in the two hexagonal boron nitride layers, we demonstrate a self-selectivity of 1010 with an on/off resistance ratio larger than 103. The graphene layer efficiently blocks the diffusion of volatile silver filaments to integrate the volatile and non-volatile kinetics in a novel way. Our self-selective memory minimizes sneak currents on large-scale memory operation, thereby achieving a practical readout margin for terabit-scale and energy-efficient memory integration.

4.
Nano Lett ; 18(5): 3229-3234, 2018 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-29668290

RESUMEN

Synaptic computation, which is vital for information processing and decision making in neural networks, has remained technically challenging to be demonstrated without using numerous transistors and capacitors, though significant efforts have been made to emulate the biological synaptic transmission such as short-term and long-term plasticity and memory. Here, we report synaptic computation based on Joule heating and versatile doping induced metal-insulator transition in a scalable monolayer-molybdenum disulfide (MoS2) device with a biologically comparable energy consumption (∼10 fJ). A circuit with our tunable excitatory and inhibitory synaptic devices demonstrates a key function for realizing the most precise temporal computation in the human brain, sound localization: detecting an interaural time difference by suppressing sound intensity- or frequency-dependent synaptic connectivity. This Letter opens a way to implement synaptic computing in neuromorphic applications, overcoming the limitation of scalability and power consumption in conventional CMOS-based neuromorphic devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...