Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 4002, 2024 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-38734692

RESUMEN

Precise genome editing is crucial for establishing isogenic human disease models and ex vivo stem cell therapy from the patient-derived hPSCs. Unlike Cas9-mediated knock-in, cytosine base editor and prime editor achieve the desirable gene correction without inducing DNA double strand breaks. However, hPSCs possess highly active DNA repair pathways and are particularly susceptible to p53-dependent cell death. These unique characteristics impede the efficiency of gene editing in hPSCs. Here, we demonstrate that dual inhibition of p53-mediated cell death and distinct activation of the DNA damage repair system upon DNA damage by cytosine base editor or prime editor additively enhanced editing efficiency in hPSCs. The BE4stem system comprised of p53DD, a dominant negative p53, and three UNG inhibitor, engineered to specifically diminish base excision repair, improves cytosine base editor efficiency in hPSCs. Addition of dominant negative MLH1 to inhibit mismatch repair activity and p53DD in the conventional prime editor system also significantly enhances prime editor efficiency in hPSCs. Thus, combined inhibition of the distinct cellular cascades engaged in hPSCs upon gene editing could significantly enhance precise genome editing in these cells.


Asunto(s)
Sistemas CRISPR-Cas , Daño del ADN , Reparación del ADN , Edición Génica , Proteína p53 Supresora de Tumor , Edición Génica/métodos , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Línea Celular , Homólogo 1 de la Proteína MutL/genética , Homólogo 1 de la Proteína MutL/metabolismo , Citosina/metabolismo
2.
BMB Rep ; 57(1): 66-70, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38053291

RESUMEN

Prime editors (PEs), which are CRISPR-Cas9 nickase (H840A)-reverse transcriptase fusion proteins programmed with prime editing guide RNAs (pegRNAs), can not only edit bases but also install transversions, insertions, or deletions without both donor DNA and double-strand breaks at the target DNA. As the demand for in-locus tagging is increasing, to reflect gene expression dynamics influenced by endogenous genomic contexts, we demonstrated that PEs can be used to introduce the hemagglutinin (HA) epitope tag to a target gene locus, enabling molecular and biochemical studies using in-locus tagged plants. To promote genome-wide in-locus tagging, we also implemented a publicly available database that designs pegRNAs for in-locus tagging of all the Arabidopsis genes. [BMB Reports 2024; 57(1): 66-70].


Asunto(s)
Proteínas de Arabidopsis , Sistemas CRISPR-Cas , Sistemas CRISPR-Cas/genética , Edición Génica , ARN Guía de Sistemas CRISPR-Cas , Proteínas de Arabidopsis/genética , ADN/genética
3.
Nat Biotechnol ; 2023 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-37697151

RESUMEN

Genome sequencing studies have identified numerous cancer mutations across a wide spectrum of tumor types, but determining the phenotypic consequence of these mutations remains a challenge. Here, we developed a high-throughput, multiplexed single-cell technology called TISCC-seq to engineer predesignated mutations in cells using CRISPR base editors, directly delineate their genotype among individual cells and determine each mutation's transcriptional phenotype. Long-read sequencing of the target gene's transcript identifies the engineered mutations, and the transcriptome profile from the same set of cells is simultaneously analyzed by short-read sequencing. Through integration, we determine the mutations' genotype and expression phenotype at single-cell resolution. Using cell lines, we engineer and evaluate the impact of >100 TP53 mutations on gene expression. Based on the single-cell gene expression, we classify the mutations as having a functionally significant phenotype.

4.
Am J Cancer Res ; 13(4): 1443-1456, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37168328

RESUMEN

N6-methyladenosine (m6A) modification in RNA affects various aspects of RNA metabolism and regulates gene expression. This modification is modulated by many regulatory proteins, such as m6A methyltransferases (writers), m6A demethylases (erasers), and m6A-binding proteins (readers). Previous studies have suggested that alterations in m6A regulatory proteins induce genome-wide alternative splicing in many cancer cells. However, the functional effects and molecular mechanisms of m6A-mediated alternative splicing have not been fully elucidated. To understand the consequences of this modification on RNA splicing in cancer cells, we performed RNA sequencing and analyzed alternative splicing patterns in METTL3-knockdown osteosarcoma U2OS cells. We detected 1,803 alternatively spliced genes in METTL3-knockdown cells compared to the controls and found that cell cycle-related genes were enriched in differentially spliced genes. A comparison of the published MeRIP-seq data for METTL14 with our RNA sequencing data revealed that 70-87% of alternatively spliced genes had an m6A peak near 1 kb of alternative splicing sites. Among the 19 RNA-binding proteins enriched in alternative splicing sites, as revealed by motif analysis, expression of SFPQ highly correlated with METTL3 expression in 12,839 TCGA pan-cancer patients. We also found that cell cycle-related genes were enriched in alternatively spliced genes of other cell lines with METTL3 knockdown. Taken together, we suggest that METTL3 regulates m6A-dependent alternative splicing, especially in cell cycle-related genes, by regulating the functions of splicing factors such as SFPQ.

5.
Methods Mol Biol ; 2606: 13-22, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36592304

RESUMEN

CRISPR-based base editors are efficient genome editing tools for use in base correction. Currently, there are various versions and types of base editors with different substitution patterns, editing windows, and protospacer adjacent motif (PAM) sequences. For the design of target sequences, consideration of off-target sequences is required. In addition, for assessment of base editing outcomes in bulk populations, the analysis of high-throughput sequencing data is required. Several web browser-based computation programs have been developed for the purpose of target design and NGS data analysis, especially for users with less computational knowledge. In this manuscript, depending on the purpose of each program, we provide an explanation of useful tools including BE-Designer for design of targets and BE-Analyzer for analysis of NGS data that were developed by our group, CRISPResso2 for analysis of NGS data developed by Luca Pinello group, DeepBaseEditor for prediction of target efficiency developed by Hyongbum Henry Kim group, and BE-Hive for prediction of target outcome developed by David Liu group.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Internet
6.
Genome Biol ; 24(1): 4, 2023 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-36627653

RESUMEN

We present a novel genome-wide off-target prediction method named Extru-seq and compare it with cell-based (GUIDE-seq), in vitro (Digenome-seq), and in silico methods using promiscuous guide RNAs with large numbers of valid off-target sites. Extru-seq demonstrates a high validation rate and retention of information about the intracellular environment, both beneficial characteristics of cell-based methods. Extru-seq also shows a low miss rate and could easily be performed in clinically relevant cell types with little optimization, which are major positive features of the in vitro methods. In summary, Extru-seq shows beneficial features of cell-based and in vitro methods.


Asunto(s)
Sistemas CRISPR-Cas , Genoma , Edición Génica , ARN Guía de Sistemas CRISPR-Cas
7.
Microbiol Spectr ; 10(6): e0376022, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36374037

RESUMEN

Genome editing technology is a powerful tool for programming microbial cell factories. However, rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of the bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we demonstrate the genome engineering of Corynebacterium glutamicum as a GC-rich model industrial bacterium by generating premature termination codons (PTCs) in desired genes using high-fidelity cytosine base editors (CBEs). Through this CBE-STOP approach of introducing specific cytosine conversions, we constructed several single-gene-inactivated strains for three genes (ldh, idsA, and pyc) with high base editing efficiencies of average 95.6% (n = 45, C6 position) and the highest success rate of up to 100% for PTCs and ultimately developed a strain with five genes (ldh, actA, ackA, pqo, and pta) that were inactivated sequentially for enhancing succinate production. Although these mutant strains showed the desired phenotypes, whole-genome sequencing (WGS) data revealed that genome-wide point mutations occurred in each strain and further accumulated according to the duration of CBE plasmids. To lower the undesirable mutations, high-fidelity CBEs (pCoryne-YE1-BE3 and pCoryne-BE3-R132E) was employed for single or multiplexed genome editing in C. glutamicum, resulting in drastically reduced sgRNA-independent off-targets. Thus, we provide a CRISPR-assisted bacterial genome engineering tool with an average high efficiency of 90.5% (n = 76, C5 or C6 position) at the desired targets. IMPORTANCE Rat APOBEC1-derived cytosine base editor (CBE) that converts C•G to T•A at target genes induced DNA off-targets, regardless of single-guide RNA (sgRNA) sequences. Although the high efficiencies of bacterial CBEs have been developed, a risk of unidentified off-targets impeded genome editing for microbial cell factories. To address the issues, we identified the DNA off-targets for single and multiple genome engineering of the industrial bacterium Corynebacterium glutamicum using whole-genome sequencing. Further, we developed the high-fidelity (HF)-CBE with significantly reduced off-targets with comparable efficiency and precision. We believe that our DNA off-target analysis and the HF-CBE can promote CRISPR-assisted genome engineering over conventional gene manipulation tools by providing a markerless genetic tool without need for a foreign DNA donor.


Asunto(s)
Corynebacterium glutamicum , Edición Génica , Animales , Ratas , Edición Génica/métodos , Corynebacterium glutamicum/genética , Citosina , Mutación , ADN/genética , ARN Guía de Sistemas CRISPR-Cas , Sistemas CRISPR-Cas , Desaminasas APOBEC-1/genética
8.
Mol Ther ; 30(8): 2664-2679, 2022 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-35690907

RESUMEN

Recessive dystrophic epidermolysis bullosa (RDEB) is a severe skin fragility disorder caused by loss-of-function mutations in the COL7A1 gene, which encodes type VII collagen (C7), a protein that functions in skin adherence. From 36 Korean RDEB patients, we identified a total of 69 pathogenic mutations (40 variants without recurrence), including point mutations (72.5%) and insertion/deletion mutations (27.5%). For fibroblasts from two patients (Pat1 and Pat2), we applied adenine base editors (ABEs) to correct the pathogenic mutation of COL7A1 or to bypass a premature stop codon in Pat1-derived primary fibroblasts. To expand the targeting scope, we also utilized prime editors (PEs) to correct the COL7A1 mutations in Pat1- and Pat2-derived fibroblasts. Ultimately, we found that transfer of edited patient-derived skin equivalents (i.e., RDEB keratinocytes and PE-corrected RDEB fibroblasts from the RDEB patient) into the skin of immunodeficient mice led to C7 deposition and anchoring fibril formation within the dermal-epidermal junction, suggesting that base editing and prime editing could be feasible strategies for ex vivo gene editing to treat RDEB.


Asunto(s)
Colágeno Tipo VII , Epidermólisis Ampollosa Distrófica , Animales , Colágeno Tipo VII/genética , Colágeno Tipo VII/metabolismo , Epidermólisis Ampollosa Distrófica/genética , Epidermólisis Ampollosa Distrófica/patología , Epidermólisis Ampollosa Distrófica/terapia , Genes Recesivos , Queratinocitos/metabolismo , Ratones , Mutación , Piel/metabolismo
9.
Nucleic Acids Res ; 50(2): 1187-1197, 2022 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-35018468

RESUMEN

Prime editing is a versatile and precise genome editing technique that can directly copy desired genetic modifications into target DNA sites without the need for donor DNA. This technique holds great promise for the analysis of gene function, disease modeling, and the correction of pathogenic mutations in clinically relevant cells such as human pluripotent stem cells (hPSCs). Here, we comprehensively tested prime editing in hPSCs by generating a doxycycline-inducible prime editing platform. Prime editing successfully induced all types of nucleotide substitutions and small insertions and deletions, similar to observations in other human cell types. Moreover, we compared prime editing and base editing for correcting a disease-related mutation in induced pluripotent stem cells derived form a patient with α 1-antitrypsin (A1AT) deficiency. Finally, whole-genome sequencing showed that, unlike the cytidine deaminase domain of cytosine base editors, the reverse transcriptase domain of a prime editor does not lead to guide RNA-independent off-target mutations in the genome. Our results demonstrate that prime editing in hPSCs has great potential for complementing previously developed CRISPR genome editing tools.


Asunto(s)
ADN/metabolismo , Edición Génica/métodos , Deficiencia de alfa 1-Antitripsina/genética , alfa 1-Antitripsina , Sistemas CRISPR-Cas , Células Madre Embrionarias Humanas , Humanos , alfa 1-Antitripsina/genética , alfa 1-Antitripsina/metabolismo
10.
Mol Ther ; 30(1): 119-129, 2022 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-34058389

RESUMEN

Adrenoleukodystrophy (ALD) is caused by various pathogenic mutations in the X-linked ABCD1 gene, which lead to metabolically abnormal accumulations of very long-chain fatty acids in many organs. However, curative treatment of ALD has not yet been achieved. To treat ALD, we applied two different gene-editing strategies, base editing and homology-independent targeted integration (HITI), in ALD patient-derived fibroblasts. Next, we performed in vivo HITI-mediated gene editing using AAV9 vectors delivered via intravenous administration in the ALD model mice. We found that the ABCD1 mRNA level was significantly increased in HITI-treated mice, and the plasma levels of C24:0-LysoPC (lysophosphatidylcholine) and C26:0-LysoPC, sensitive diagnostic markers for ALD, were significantly reduced. These results suggest that HITI-mediated mutant gene rescue could be a promising therapeutic strategy for human ALD treatment.


Asunto(s)
Adrenoleucodistrofia , Miembro 1 de la Subfamilia D de Transportador de Casetes de Unión al ATP/genética , Transportadoras de Casetes de Unión a ATP/genética , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Adrenoleucodistrofia/terapia , Animales , Ácidos Grasos , Edición Génica , Terapia Genética , Humanos , Ratones
11.
Nat Biotechnol ; 39(11): 1426-1433, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34211162

RESUMEN

Adenine base editors (ABEs) catalyze specific A-to-G conversions at genomic sites of interest. However, ABEs also induce cytosine deamination at the target site. To reduce the cytosine editing activity, we engineered a commonly used adenosine deaminase, TadA7.10, and found that ABE7.10 with a D108Q mutation in TadA7.10 exhibited tenfold reduced cytosine deamination activity. The D108Q mutation also reduces cytosine deamination activity in two recently developed high-activity versions of ABE, ABE8e and ABE8s, and is compatible with V106W, a mutation that reduces off-target RNA editing. ABE7.10 containing a P48R mutation displayed increased cytosine deamination activity and a substantially reduced adenine editing rate, yielding a TC-specific base editing tool for TC-to-TT or TC-to-TG conversions that broadens the utility of base editors.


Asunto(s)
Citosina , Edición Génica , Adenina , Sistemas CRISPR-Cas/genética , Edición de ARN/genética
12.
Int J Mol Sci ; 22(12)2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34203807

RESUMEN

Genome editing using CRISPR-Cas9 nucleases is based on the repair of the DNA double-strand break (DSB). In eukaryotic cells, DSBs are rejoined through homology-directed repair (HDR), non-homologous end joining (NHEJ) or microhomology-mediated end joining (MMEJ) pathways. Among these, it is thought that the NHEJ pathway is dominant and occurs throughout a cell cycle. NHEJ-based DSB repair is known to be error-prone; however, there are few studies that delve into it deeply in endogenous genes. Here, we quantify the degree of NHEJ-based DSB repair accuracy (termed NHEJ accuracy) in human-originated cells by incorporating exogenous DNA oligonucleotides. Through an analysis of joined sequences between the exogenous DNA and the endogenous target after DSBs occur, we determined that the average value of NHEJ accuracy is approximately 75% in maximum in HEK 293T cells. In a deep analysis, we found that NHEJ accuracy is sequence-dependent and the value at the DSB end proximal to a protospacer adjacent motif (PAM) is relatively lower than that at the DSB end distal to the PAM. In addition, we observed a negative correlation between the insertion mutation ratio and the degree of NHEJ accuracy. Our findings would broaden the understanding of Cas9-mediated genome editing.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , División del ADN , Reparación del ADN por Unión de Extremidades/genética , Secuencia de Bases , ADN/metabolismo , Células HEK293 , Células HeLa , Humanos , Mutación/genética , Oligonucleótidos/metabolismo , ARN Guía de Kinetoplastida/genética , Eliminación de Secuencia/genética
13.
Nucleic Acids Res ; 49(W1): W499-W504, 2021 07 02.
Artículo en Inglés | MEDLINE | ID: mdl-33939828

RESUMEN

Prime editing technology is capable of generating targeted insertions, deletions, and base conversions. However, the process of designing prime editing guide RNAs (pegRNAs), which contain a primer binding site and a reverse-transcription template at the 3' end, is more complex than that for the single guide RNAs used with CRISPR nucleases or base editors. Furthermore, the assessment of high-throughput sequencing data after prime editors (PEs) have been employed should consider the unique feature of PEs; thus, pre-existing assessment tools cannot directly be adopted for PEs. Here, we present two user-friendly web-based tools for PEs, named PE-Designer and PE-Analyzer. PE-Designer, a dedicated tool for pegRNA selection, provides all possible target sequences, pegRNA extension sequences, and nicking guide RNA sequences together with useful information, and displays the results in an interactive image. PE-Analyzer, a dedicated tool for PE outcome analysis, accepts high-throughput sequencing data, summarizes mutation-related information in a table, and provides interactive graphs. PE-Analyzer was mainly written using JavaScript so that it can analyze several data sets without requiring that huge sequencing data (>100MB) be uploaded to the server, reducing analysis time and increasing personal security. PE-Designer and PE-Analyzer are freely available at http://www.rgenome.net/pe-designer/ and http://www.rgenome.net/pe-analyzer/ without a login process.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica/métodos , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Internet , Mutación , ARN/química , Alineación de Secuencia
14.
Mol Ther Methods Clin Dev ; 20: 792-800, 2021 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-33768124

RESUMEN

Lentiviruses have been widely used as a means of transferring exogenous DNAs into human cells to treat various genetic diseases. Lentiviral vectors are fundamentally integrated into the host genome, but their integration sites are generally unpredictable, which may increase the uncertainty for their use in therapeutics. To determine the viral integration sites in the host genome, several PCR-based methods have been developed. However, the sensitivities of the PCR-based methods are highly dependent on the primer sequences, and optimized primer design is required for individual target sites. In order to address this issue, we developed an alternative method for genome-wide mapping of viral insertion sites, named CReVIS-seq (CRISPR-enhanced Viral Integration Site Sequencing). The method is based on the sequential steps: fragmentation of genomic DNAs, in vitro circularization, cleavage of target sequence in a CRISPR guide RNA-specific manner, high-throughput sequencing of the linearized DNA fragments in an unbiased manner, and identification of viral insertion sites via sequence analysis. By design, CReVIS-seq is not affected by biases that could be introduced during the target enrichment step via PCR amplification using site specific primers. Furthermore, we found that multiplexed CReVIS-seq, using collections of different single-guide RNAs (sgRNAs), enables simultaneous identification of multiple target sites and structural variations (i.e., circularized viral genome), in both single cell clones and heterogeneous cell populations.

15.
Methods Mol Biol ; 2162: 23-33, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32926375

RESUMEN

The CRISPR-Cas system facilitates highly efficient genome editing; thus, it has been applied in many research fields such as biological science, medicine, and gene therapy. However, CRISPR nucleases can cleave off-target sites as well as on-target sites, causing unwanted mutations. Furthermore, after CRISPR treatments are delivered into cells or organisms, it is important to estimate the resulting mutation rates and to determine the patterns of mutations, but these tasks can be difficult. To address these issues, we have developed a tool for identifying potential off-target sites (Cas-OFFinder), a tool for designing CRISPR targets (Cas-Designer), and an assessment tool (Cas-Analyzer). These programs are all implemented on our website so that researchers can easily design CRISPR guide RNAs and assess the resulting mutations by simply clicking on the appropriate buttons; no login process is required.


Asunto(s)
Sistemas CRISPR-Cas/genética , Biología Computacional/métodos , Edición Génica/métodos , Programas Informáticos , Humanos , Internet , ARN Guía de Kinetoplastida/genética
16.
Methods Mol Biol ; 2189: 81-88, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33180295

RESUMEN

The CRISPR-Cas system is broadly used for genome editing because of its convenience and relatively low cost. However, the use of CRISPR nucleases to induce specific nucleotide changes in target DNA requires complex procedures and additional donor DNAs. Furthermore, CRISPR nuclease-mediated DNA cleavage at target sites frequently causes large deletions or genomic rearrangements. In contrast, base editors that consist of catalytically dead Cas9 (dCas9) or Cas9 nickase (nCas9) connected to a cytidine or a guanine deaminase can correct point mutations in the absence of additional donor DNA and without generating double-strand breaks (DSBs) in the target region. To design target sites and assess mutation ratios for cytosine and adenine base editors (CBEs and ABEs), we have developed web tools, named BE-Designer and BE-Analyzer. These tools are easy to use (such that tasks are accomplished by clicking on relevant buttons) and do not require a deep knowledge of bioinformatics.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Internet , Análisis de Secuencia de ADN , Programas Informáticos
17.
Comput Struct Biotechnol J ; 18: 1686-1694, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32670508

RESUMEN

CRISPR-Cas9 induces DNA cleavages at desired target sites in a guide RNA-dependent manner; DNA editing occurs through the resulting activity of DNA repair processes including non-homologous end joining (NHEJ), which is dominant in mammalian cells. NHEJ repair frequently causes small insertions and deletions (indels) near DNA cleavage sites but only rarely causes nucleotide substitutions. High-throughput sequencing is the primary means of assessing indel and substitution frequencies in bulk populations of cells in the gene editing field. However, it is difficult to detect bona fide substitutions, which are embedded among experimentally-induced substitution errors, in high-throughput sequencing data. Here, we developed a novel analysis method, named CRISPR-Sub, to statistically detect Cas9-mediated substitutions in high-throughput sequencing data by comparing Mock- and CRISPR-treated samples. We first pinpointed 'hotspot positions' in target sequences at which substitution mutations were quantitatively observed much more often (p > 0.001) in CRISPR- versus Mock-treated samples. We refer to the substitution mutations in defined hotspot positions as 'apparent substitutions' and ultimately calculated 'apparent substitution frequencies' for each target. By examining 51 endogenous target sites in HeLa cells, we found that the average apparent substitution frequency was 0.8% in all queries, that apparent substitutions frequently occur near CRISPR-Cas9 cleavage sites, and that nucleotide conversion showed no meaningful nucleotide preference patterns. Furthermore, we generated NHEJ-inhibited cell lines (LIG4-/- ) by knockout of the gene encoding ligase IV and found that the apparent substitution frequencies were significantly decreased in LIG4-/- cells, strongly suggesting that DNA substitutions are generated by the NHEJ pathway.

18.
Exp Mol Med ; 52(7): 1016-1027, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32651459

RESUMEN

The CRISPR-Cas system has undoubtedly revolutionized the genome editing field, enabling targeted gene disruption, regulation, and recovery in a guide RNA-specific manner. In this review, we focus on currently available gene recovery strategies that use CRISPR nucleases, particularly for the treatment of genetic disorders. Through the action of DNA repair mechanisms, CRISPR-mediated DNA cleavage at a genomic target can shift the reading frame to correct abnormal frameshifts, whereas DNA cleavage at two sites, which can induce large deletions or inversions, can correct structural abnormalities in DNA. Homology-mediated or homology-independent gene recovery strategies that require donor DNAs have been developed and widely applied to precisely correct mutated sequences in genes of interest. In contrast to the DNA cleavage-mediated gene correction methods listed above, base-editing tools enable base conversion in the absence of donor DNAs. In addition, CRISPR-associated transposases have been harnessed to generate a targeted knockin, and prime editors have been developed to edit tens of nucleotides in cells. Here, we introduce currently developed gene recovery strategies and discuss the pros and cons of each.


Asunto(s)
Sistemas CRISPR-Cas/genética , Genes , ADN/genética , División del ADN , Reparación del ADN/genética , Edición Génica
19.
Mol Ther ; 27(8): 1364-1371, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31164261

RESUMEN

A nonsense mutation is a substitutive mutation in a DNA sequence that causes a premature termination during translation and produces stalled proteins, resulting in dysfunction of a gene. Although it usually induces severe genetic disorders, there are no definite methods for inducing read through of premature termination codons (PTCs). Here, we present a targeted tool for bypassing PTCs, named CRISPR-pass, that uses CRISPR-mediated adenine base editors. CRISPR-pass, which should be applicable to 95.5% of clinically significant nonsense mutations in the ClinVar database, rescues protein synthesis in patient-derived fibroblasts, suggesting potential clinical utility.


Asunto(s)
Adenina , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Codón sin Sentido , Edición Génica , Línea Celular , Bases de Datos Genéticas , Fibroblastos , Genes Reporteros , Humanos , Biosíntesis de Proteínas/genética , ARN Mensajero/genética
20.
BMC Bioinformatics ; 19(1): 542, 2018 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-30587106

RESUMEN

BACKGROUND: As a result of its simplicity and high efficiency, the CRISPR-Cas system has been widely used as a genome editing tool. Recently, CRISPR base editors, which consist of deactivated Cas9 (dCas9) or Cas9 nickase (nCas9) linked with a cytidine or a guanine deaminase, have been developed. Base editing tools will be very useful for gene correction because they can produce highly specific DNA substitutions without the introduction of any donor DNA, but dedicated web-based tools to facilitate the use of such tools have not yet been developed. RESULTS: We present two web tools for base editors, named BE-Designer and BE-Analyzer. BE-Designer provides all possible base editor target sequences in a given input DNA sequence with useful information including potential off-target sites. BE-Analyzer, a tool for assessing base editing outcomes from next generation sequencing (NGS) data, provides information about mutations in a table and interactive graphs. Furthermore, because the tool runs client-side, large amounts of targeted deep sequencing data (< 1 GB) do not need to be uploaded to a server, substantially reducing running time and increasing data security. BE-Designer and BE-Analyzer can be freely accessed at http://www.rgenome.net/be-designer/ and http://www.rgenome.net/be-analyzer /, respectively. CONCLUSION: We develop two useful web tools to design target sequence (BE-Designer) and to analyze NGS data from experimental results (BE-Analyzer) for CRISPR base editors.


Asunto(s)
Sistemas CRISPR-Cas/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Internet/instrumentación , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...