Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Mol Graph Model ; 129: 108761, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38552302

RESUMEN

ADP-glucose pyrophosphorylase plays a pivotal role as an allosteric enzyme, essential for starch biosynthesis in plants. The higher plant AGPase comparises of a pair of large and a pair of small subunits to form a heterotetrameric complex. Growing evidence indicates that each subunit plays a distinct role in regulating the underlying mechanism of starch biosynthesis. In the rice genome, there are four large subunit genes (OsL1-L4) and three small subunit genes (OsS1, OsS2a, and OsS2b). While the structural assembly of cytosolic rice AGPase subunits (OsL2:OsS2b) has been elucidated, there is currently no such documented research available for plastidial rice AGPases (OsL1:OsS1). In this study, we employed protein modeling and MD simulation approaches to gain insights into the structural association of plastidial rice AGPase subunits. Our results demonstrate that the heterotetrameric association of OsL1:OsS1 is very similar to that of cytosolic OsL2:OsS2b and potato AGPase heterotetramer (StLS:StSS). Moreover, the yeast-two-hybrid results on OsL1:OsS1, which resemble StLS:StSS, suggest a differential protein assembly for OsL2:OsS2b. Thus, the regulatory and catalytic mechanisms for plastidial AGPases (OsL1:OsS1) could be different in rice culm and developing endosperm compared to those of OsL2:OsS2b, which are predominantly found in rice endosperm.


Asunto(s)
Oryza , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Oryza/genética , Endospermo/genética , Endospermo/metabolismo , Simulación por Computador , Almidón/metabolismo , Subunidades de Proteína/metabolismo
2.
Plant Cell Physiol ; 62(1): 125-142, 2021 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-33237266

RESUMEN

The plastidial starch phosphorylase (Pho1) functions in starch metabolism. A distinctive structural feature of the higher Pho1 is a 50-82-amino-acid long peptide (L50-L82), which is absent in phosphorylases from non-plant organisms. To study the function of the rice Pho1 L80 peptide, we complemented a pho1- rice mutant (BMF136) with the wild-type Pho1 gene or with a Pho1 gene lacking the L80 region (Pho1ΔL80). While expression of Pho1 in BMF136 restored normal wild-type phenotype, the introduction of Pho1ΔL80 enhanced the growth rate and plant productivity above wild-type levels. Mass spectrometry analysis of proteins captured by anti-Pho1 showed the surprising presence of PsaC, the terminal electron acceptor/donor subunit of photosystem I (PSI). This unexpected interaction was substantiated by reciprocal immobilized protein pull-down assays of seedling extracts and supported by the presence of Pho1 on isolated PSI complexes resolved by blue-native gels. Spectrophotometric studies showed that Pho1ΔL80 plants exhibited modified PSI and enhanced CO2 assimilation properties. Collectively, these findings indicate that the higher plant Pho1 has dual roles as a potential modulator of source and sink processes.


Asunto(s)
Oryza/enzimología , Proteínas de Plantas/metabolismo , Almidón Fosforilasa/metabolismo , Almidón/metabolismo , Espectrometría de Masas , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Complejo de Proteína del Fotosistema I/metabolismo , Proteínas de Plantas/fisiología , Plantones/metabolismo , Almidón Fosforilasa/fisiología
3.
Plant Sci ; 290: 110303, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31779913

RESUMEN

The physiological roles of the plastidial phosphorylase in starch metabolism of higher plants have been debated for decades. While estimated physiological substrate levels favor a degradative role, genetic evidence indicates that the plastidial phosphorylase (Pho1) plays an essential role in starch initiation and maturation of the starch granule in developing rice grains. The plastidial enzyme contains a unique peptide domain, up to 82 residues in length depending on the plant species, not found in its cytosolic counterpart or glycogen phosphorylases. The role of this extra peptide domain is perplexing, as its complete removal does not significantly affect the in vitro catalytic or enzymatic regulatory properties of rice Pho1. This peptide domain may have a regulatory function as it contains potential phosphorylation sites and, in some plant Pho1s, a PEST motif, a substrate for proteasome-mediated degradation. We discuss the potential roles of Pho1 and its L80 domain in starch biosynthesis and photosynthesis.


Asunto(s)
Fosforilasas/metabolismo , Proteínas de Plantas/metabolismo , Plantas/metabolismo , Plastidios/enzimología , Plantas/enzimología , Almidón/metabolismo
4.
Front Plant Sci ; 10: 70, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-30804963

RESUMEN

Rice grains accumulate starch as their major storage reserve whose biosynthesis is sensitive to heat. ADP-glucose pyrophosphorylase (AGPase) is among the starch biosynthetic enzymes severely affected by heat stress during seed maturation. To increase the heat tolerance of the rice enzyme, we engineered two dominant AGPase subunits expressed in developing endosperm, the large (L2) and small (S2b) subunits of the cytosol-specific AGPase. Bacterial expression of the rice S2b with the rice L2, potato tuber LS (pLS), or with the mosaic rice-potato large subunits, L2-pLS and pLS-L2, produced heat-sensitive recombinant enzymes, which retained less than 10% of their enzyme activities after 5 min incubation at 55°C. However, assembly of the rice L2 with the potato tuber SS (pSS) showed significantly increased heat stability comparable to the heat-stable potato pLS/pSS. The S2b assembled with the mosaic L2-pLS subunit showed 3-fold higher sensitivity to 3-PGA than L2/S2b, whereas the counterpart mosaic pLS-L2/S2b showed 225-fold lower sensitivity. Introduction of a QTC motif into S2b created an N-terminal disulfide linkage that was cleaved by dithiothreitol reduction. The QTC enzyme showed moderate heat stability but was not as stable as the potato AGPase. While the QTC AGPase exhibited approximately fourfold increase in 3-PGA sensitivity, its substrate affinities were largely unchanged. Random mutagenesis of S2bQTC produced six mutant lines with elevated production of glycogen in bacteria. All six lines contained a L379F substitution, which conferred enhanced glycogen production in bacteria and increased heat stability. Modeled structure of this mutant enzyme revealed that this highly conserved leucine residue is located in the enzyme's regulatory pocket that provides interaction sites for activators and inhibitors. Our molecular dynamic simulation analysis suggests that introduction of the QTC motif and the L379F mutation improves enzyme heat stability by stabilizing their backbone structures possibly due to the increased number of H-bonds between the small subunits and increased intermolecular interactions between the two SSs and two LSs at elevated temperature.

5.
Plant J ; 97(6): 1073-1088, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30523657

RESUMEN

The CS8 transgenic rice (Oryza sativa L.) lines expressing an up-regulated glgC gene produced higher levels of ADPglucose (ADPglc), the substrate for starch synthases. However, the increase in grain weight was much less than the increase in ADPglc levels suggesting one or more downstream rate-limiting steps. Endosperm starch levels were not further enhanced in double transgenic plants expressing both glgC and the maize brittle-1 gene, the latter responsible for transport of ADPglc into the amyloplast. These studies demonstrate that critical processes within the amyloplast stroma restrict maximum carbon flow into starch. RNA-seq analysis showed extensive re-programming of gene expression in the CS8 with 2073 genes up-regulated and 140 down-regulated. One conspicuous gene, up-regulated ~15-fold, coded for a biochemically uncharacterized starch binding domain-containing protein (SBDCP1) possessing a plastid transit peptide. Confocal microscopy and transmission electron microscopy analysis confirmed that SBDCP1 was located in the amyloplasts. Reciprocal immunoprecipitation and pull-down assays indicated an interaction between SBDCP1 and starch synthase IIIa (SSIIIa), which was down-regulated at the protein level in the CS8 line. Furthermore, binding by SBDCP1 inhibited SSIIIa starch polymerization activity in a non-competitive manner. Surprisingly, artificial microRNA gene suppression of SBDCP1 restored protein expression levels of SSIIIa in the CS8 line resulting in starch with lower amylose content and increased amylopectin chains with a higher degree of polymerization. Collectively, our results support the involvement of additional non-enzymatic factors such as SBDCP in starch biosynthesis.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Oryza/enzimología , Proteínas de Plantas/metabolismo , Almidón/biosíntesis , Zea mays/genética , Regulación hacia Abajo , Endospermo/metabolismo , Expresión Génica , Perfilación de la Expresión Génica , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Oryza/genética , Oryza/fisiología , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Almidón Sintasa/genética , Almidón Sintasa/metabolismo , Regulación hacia Arriba
6.
Plant Cell ; 30(10): 2529-2552, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30190374

RESUMEN

In developing rice (Oryza sativa) endosperm, mRNAs of the major storage proteins, glutelin and prolamine, are transported and anchored to distinct subdomains of the cortical endoplasmic reticulum. RNA binding protein RBP-P binds to both glutelin and prolamine mRNAs, suggesting a role in some aspect of their RNA metabolism. Here, we show that rice lines expressing mutant RBP-P mislocalize both glutelin and prolamine mRNAs. Different mutant RBP-P proteins exhibited varying degrees of reduced RNA binding and/or protein-protein interaction properties, which may account for the mislocalization of storage protein RNAs. In addition, partial loss of RBP-P function conferred a broad phenotypic variation ranging from dwarfism, chlorophyll deficiency, and sterility to late flowering and low spikelet fertility. Transcriptome analysis highlighted the essential role of RBP-P in regulating storage protein genes and several essential biological processes during grain development. Overall, our data demonstrate the significant roles of RBP-P in glutelin and prolamine mRNA localization and in the regulation of genes important for plant growth and development through its RNA binding activity and cooperative regulation with interacting proteins.


Asunto(s)
Endospermo/metabolismo , Glútenes/genética , Oryza/metabolismo , Prolaminas/genética , Proteínas de Unión al ARN/metabolismo , Retículo Endoplásmico/genética , Retículo Endoplásmico/metabolismo , Endospermo/genética , Regulación de la Expresión Génica de las Plantas , Glútenes/metabolismo , Mutación , Oryza/genética , Oryza/crecimiento & desarrollo , Prolaminas/metabolismo , Dominios Proteicos , Multimerización de Proteína , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Proteínas de Unión al ARN/genética
7.
J Exp Bot ; 67(18): 5557-5569, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27588462

RESUMEN

To elucidate the starch synthesis pathway and the role of this reserve in rice pollen, we characterized mutations in the plastidic phosphoglucomutase, OspPGM, and the plastidic large subunit of ADP-glucose (ADP-Glc) pyrophosphorylase, OsAGPL4 Both genes were up-regulated in maturing pollen, a stage when starch begins to accumulate. Progeny analysis of self-pollinated heterozygous lines carrying the OspPGM mutant alleles, osppgm-1 and osppgm-2, or the OsAGPL4 mutant allele, osagpl4-1, as well as reciprocal crosses between the wild type (WT) and heterozygotes revealed that loss of OspPGM or OsAGPL4 caused male sterility, with the former condition rescued by the introduction of the WT OspPGM gene. While iodine staining and transmission electron microscopy analyses of pollen grains from homozygous osppgm-1 lines produced by anther culture confirmed the starch null phenotype, pollen from homozygous osagpl4 mutant lines, osagpl4-2 and osagpl4-3, generated by the CRISPR/Cas system, accumulated small amounts of starch which were sufficient to produce viable seed. Such osagpl4 mutant pollen, however, was unable to compete against WT pollen successfully, validating the important role of this reserve in fertilization. Our results demonstrate that starch is mainly polymerized from ADP-Glc synthesized from plastidic hexose phosphates in rice pollen and that starch is an essential requirement for successful fertilization in rice.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Oryza/fisiología , Fosfoglucomutasa/metabolismo , Polen/metabolismo , Almidón/biosíntesis , Fertilidad/fisiología , Glucosa-1-Fosfato Adenililtransferasa/fisiología , Microscopía , Mutación , Oryza/enzimología , Oryza/metabolismo , Fosfoglucomutasa/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
8.
J Biol Chem ; 291(38): 19994-20007, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27502283

RESUMEN

Starch synthesis in cereal grain endosperm is dependent on the concerted actions of many enzymes. The starch plastidial phosphorylase (Pho1) plays an important role in the initiation of starch synthesis and in the maturation of starch granule in developing rice seeds. Prior evidence has suggested that the rice enzyme, OsPho1, may have a physical/functional interaction with other starch biosynthetic enzymes. Pulldown experiments showed that OsPho1 as well as OsPho1 devoid of its L80 region, a peptide unique to higher plant phosphorylases, captures disproportionating enzyme (OsDpe1). Interaction of the latter enzyme form with OsDpe1 indicates that the putative regulatory L80 is not responsible for multienzyme assembly. This heterotypic enzyme complex, determined at a molar ratio of 1:1, was validated by reciprocal co-immunoprecipitation studies of native seed proteins and by co-elution chromatographic and co-migration electrophoretic patterns of these enzymes in rice seed extracts. The OsPho1-OsDpe1 complex utilized a broader range of substrates for enhanced synthesis of larger maltooligosaccharides than each individual enzyme and significantly elevated the substrate affinities of OsPho1 at 30 °C. Moreover, the assembly with OsDpe1 enables OsPho1 to utilize products of transglycosylation reactions involving G1 and G3, sugars that it cannot catalyze directly.


Asunto(s)
Endospermo/enzimología , Complejos Multienzimáticos/metabolismo , Oligosacáridos/metabolismo , Oryza/enzimología , Almidón Fosforilasa/metabolismo , Endospermo/genética , Complejos Multienzimáticos/genética , Oligosacáridos/genética , Oryza/genética , Almidón Fosforilasa/genética
9.
Plant Physiol ; 170(3): 1271-83, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26754668

RESUMEN

Previous studies showed that efforts to further elevate starch synthesis in rice (Oryza sativa) seeds overproducing ADP-glucose (ADPglc) were prevented by processes downstream of ADPglc synthesis. Here, we identified the major ADPglc transporter by studying the shrunken3 locus of the EM1093 rice line, which harbors a mutation in the BRITTLE1 (BT1) adenylate transporter (OsBt1) gene. Despite containing elevated ADPglc levels (approximately 10-fold) compared with the wild-type, EM1093 grains are small and shriveled due to the reduction in the amounts and size of starch granules. Increases in ADPglc levels in EM1093 were due to their poor uptake of ADP-[(14)C]glc by amyloplasts. To assess the potential role of BT1 as a rate-determining step in starch biosynthesis, the maize ZmBt1 gene was overexpressed in the wild-type and the GlgC (CS8) transgenic line expressing a bacterial glgC-TM gene. ADPglc transport assays indicated that transgenic lines expressing ZmBT1 alone or combined with GlgC exhibited higher rates of transport (approximately 2-fold), with the GlgC (CS8) and GlgC/ZmBT1 (CS8/AT5) lines showing elevated ADPglc levels in amyloplasts. These increases, however, did not lead to further enhancement in seed weights even when these plant lines were grown under elevated CO2. Overall, our results indicate that rice lines with enhanced ADPglc synthesis and import into amyloplasts reveal additional barriers within the stroma that restrict maximum carbon flow into starch.


Asunto(s)
Adenosina Difosfato Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Genes de Plantas , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Mutación , Oryza/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Plastidios/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Semillas/metabolismo , Zea mays/enzimología , Zea mays/genética
10.
Planta ; 243(4): 999-1009, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26748915

RESUMEN

MAIN CONCLUSION: Consistent with its essential role in starch biosynthesis at low temperatures, the plastidial starch phosphorylase from rice endosperm is highly active at low temperature. Moreover, contrary to results on other higher plant phosphorylases, the L80 peptide, a domain unique to plant phosphorylases and not present in orthologous phosphorylases from other organisms, is not involved in enzyme catalysis. Starch phosphorylase (Pho) is an essential enzyme in starch synthesis in developing rice endosperm as the enzyme plays a critical role in both the early and maturation phases of starch granule formation especially at low temperature. In this study, we demonstrated that the rice Pho1 maintains substantial enzyme activity at low temperature (<20 °C) and its substrate affinities for branched α-glucans and glucose-1-phosphate were significantly increased at the lower reaction temperatures. Under sub-saturating substrate conditions, OsPho1 displayed higher catalytic activities at 18 °C than at optimal 36 °C, supporting the prominent role of the enzyme in starch synthesis at low temperature. Removal of the highly charged 80-amino acid sequence L80 peptide, a region found exclusively in the plastidial Pho1 of higher plants, did not significantly alter the catalytic and regulatory properties of OsPho1 but did affect heat stability. Our kinetic results support the low temperature biosynthetic role of OsPho1 in rice endosperm and indicate that its L80 region is unlikely to have a direct enzymatic role but provides stability of the enzyme under heat stress.


Asunto(s)
Endospermo/enzimología , Oryza/enzimología , Proteínas de Plantas/metabolismo , Almidón Fosforilasa/metabolismo , Catálisis , Proteínas de Plantas/genética , Plastidios/enzimología , Dominios Proteicos , Almidón Fosforilasa/genética , Temperatura
11.
FEBS Lett ; 589(13): 1444-9, 2015 Jun 04.
Artículo en Inglés | MEDLINE | ID: mdl-25953126

RESUMEN

Substrate binding properties of the large (LS) and small (SS) subunits of potato tuber ADP-glucose pyrophosphorylase were investigated by using isothermal titration calorimetry. Our results clearly show that the wild type heterotetramer (S(WT)L(WT)) possesses two distinct types of ATP binding sites, whereas the homotetrameric LS and SS variant forms only exhibited properties of one of the two binding sites. The wild type enzyme also exhibited significantly increased affinity to this substrate compared to the homotetrameric enzyme forms. No stable binding was evident for the second substrate, glucose-1-phosphate, in the presence or absence of ATPγS suggesting that interaction of glucose-1-phosphate is dependent on hydrolysis of ATP and supports the Theorell-Chance bi bi reaction mechanism.


Asunto(s)
Calorimetría/métodos , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas de Plantas/metabolismo , Tubérculos de la Planta/enzimología , Solanum tuberosum/enzimología , Adenosina Trifosfato/análogos & derivados , Adenosina Trifosfato/química , Adenosina Trifosfato/metabolismo , Sitios de Unión , Unión Competitiva , Western Blotting , Glucosa-1-Fosfato Adenililtransferasa/química , Glucofosfatos/química , Glucofosfatos/metabolismo , Cinética , Modelos Moleculares , Estructura Molecular , Proteínas de Plantas/química , Unión Proteica , Multimerización de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Especificidad por Sustrato , Termodinámica
12.
FEBS J ; 281(21): 4951-63, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25204204

RESUMEN

The starch regulatory enzyme ADP-glucose pyrophosphorylase is activated by 3-phosphoglyceric acid (3-PGA) and inhibited by inorganic phosphate (Pi ). The activity of the plastid-localized enzyme is also subject to fine regulation by redox control in response to changing light and sugar levels. The less active oxidized form of the enzyme contains an inter-subunit disulfide bond formed between the pair of small subunit's Cys12 residues of the heterotetrameric enzyme. Although this cysteine residue is not conserved in the small subunits of cereal endosperm cytosolic AGPases, biochemical studies of the major rice endosperm enzyme indicate that the cytosolic isoform, like the plastidial enzymes, is subject to redox control. Kinetic analysis revealed that the reduced forms of the partially purified native and purified recombinant AGPases have 6- and 3.4-fold, respectively, more affinity to 3-PGA, rendering the enzymes more active at lower 3-PGA concentration than the non-reduced enzyme. Truncation of the large subunit by removal of N-terminal peptide resulted in a decrease in 3-PGA affinity and loss of redox response of the enzyme. Site-directed mutagenesis of the conserved cysteine residues at the N-terminal of the large subunit showed that C47 and C58, but not C12, are essential for proper redox response of the enzyme. Overall, our results show that the major rice endosperm AGPase activity is controlled by a combination of allosteric regulation and redox control, the latter through modification of the large subunit instead of the small subunit as evident in the plastid-localized enzyme.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/química , Oryza/enzimología , Proteínas de Plantas/química , Regulación Alostérica , Sustitución de Aminoácidos , Secuencia Conservada , Cistina/análisis , Citosol/enzimología , Endospermo/enzimología , Genes de Plantas , Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Ácidos Glicéricos/metabolismo , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plastidios/enzimología , Conformación Proteica , Subunidades de Proteína , Proteínas Recombinantes/química , Eliminación de Secuencia , Relación Estructura-Actividad
13.
Plant Cell Physiol ; 55(6): 1169-83, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24747952

RESUMEN

Although an alternative pathway has been suggested, the prevailing view is that starch synthesis in cereal endosperm is controlled by the activity of the cytosolic isoform of ADPglucose pyrophosphorylase (AGPase). In rice, the cytosolic AGPase isoform is encoded by the OsAGPS2b and OsAGPL2 genes, which code for the small (S2b) and large (L2) subunits of the heterotetrameric enzyme, respectively. In this study, we isolated several allelic missense and nonsense OsAGPL2 mutants by N-methyl-N-nitrosourea (MNU) treatment of fertilized egg cells and by TILLING (Targeting Induced Local Lesions in Genomes). Interestingly, seeds from three of the missense mutants (two containing T139I and A171V) were severely shriveled and had seed weight and starch content comparable with the shriveled seeds from OsAGPL2 null mutants. Results from kinetic analysis of the purified recombinant enzymes revealed that the catalytic and allosteric regulatory properties of these mutant enzymes were significantly impaired. The missense heterotetramer enzymes and the S2b homotetramer had lower specific (catalytic) activities and affinities for the activator 3-phosphoglycerate (3-PGA). The missense heterotetramer enzymes showed more sensitivity to inhibition by the inhibitor inorganic phosphate (Pi) than the wild-type AGPase, while the S2b homotetramer was profoundly tolerant to Pi inhibition. Thus, our results provide definitive evidence that starch biosynthesis during rice endosperm development is controlled predominantly by the catalytic activity of the cytoplasmic AGPase and its allosteric regulation by the effectors. Moreover, our results show that the L2 subunit is essential for both catalysis and allosteric regulatory properties of the heterotetramer enzyme.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/genética , Oryza/enzimología , Almidón/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Catálisis , Codón sin Sentido , Endospermo/enzimología , Endospermo/genética , Glucosa-1-Fosfato Adenililtransferasa/aislamiento & purificación , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Isoenzimas , Cinética , Modelos Estructurales , Datos de Secuencia Molecular , Mutación Missense , Oryza/genética , Fenotipo , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Polimerizacion , Proteínas Recombinantes , Semillas/enzimología , Semillas/genética , Alineación de Secuencia
14.
Biosci Biotechnol Biochem ; 77(9): 1854-9, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24018661

RESUMEN

The higher plant ADP-glucose (ADPG) pyrophosphorylase (AGPase), composed of two small subunits and two large subunits (LSs), produces ADPG, the sole substrate for starch biosynthesis from α-D-glucose 1-phosphate and ATP. This enzyme controls a key step in starch synthesis as its catalytic activity is activated by 3-phosphoglycerate (3-PGA) and inhibited by orthophosphate (Pi). Previously, two mutations in the LS of potato AGPase (PLS), PLS-E38K and PLS-G101N, were found to increase sensitivity to 3-PGA activation and tolerance to Pi inhibition. In the present study, the double mutated enzyme (PLS-E38K/G101N) was evaluated. In a complementation assay of ADPG synthesis in an Escherichia coli mutant defective in the synthesis of ADPG, expression of PLS-E38K/G101N mediated higher glycogen production than wild-type potato AGPase (PLS-WT) and the single mutant enzymes, PLS-E38K and PLS-G101N, individually. Purified PLS-E38K/G101N showed higher sensitivity to 3-PGA activation and tolerance to Pi inhibition than PLS-E38K or PLS-G101N. Moreover, the enzyme activities of PLS-E38K, PLS-G101N, and PLS-E38K/G101N were more readily stimulated by other major phosphate-ester metabolites, such as fructose 6-phosphate, fructose 2,6-bisphosphate, and ribose 5-phosphate, than was that of PLS-WT. Hence, although the specific enzyme activities of the LS mutants toward 3-PGA were impaired to some extent by the mutations, our results suggest that their enhanced allosteric regulatory properties and the broadened effector selectivity gained by the same mutations not only offset the lowered enzyme catalytic turnover rates but also increase the net performance of potato AGPase in vivo in view of increased glycogen production in bacterial cells.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mutación , Tubérculos de la Planta/enzimología , Solanum tuberosum/enzimología , Regulación Alostérica/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Glucosa-1-Fosfato Adenililtransferasa/genética , Ácidos Glicéricos/farmacología , Cinética , Modelos Moleculares , Proteínas Mutantes/genética , Multimerización de Proteína , Estructura Cuaternaria de Proteína
15.
Arch Biochem Biophys ; 537(2): 210-6, 2013 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-23906662

RESUMEN

ADP-glucose pyrophosphorylase (AGPase) is highly regulated by allosteric effectors acting both positively and negatively. Enzymes from various sources differ, however, in the mechanism of allosteric regulation. Here, we determined how the effector, inorganic phosphate (Pi), functions in the presence and absence of saturating amounts of the activator, 3-phosphoglyceric acid (3-PGA). This regulation was examined in the maize endosperm enzyme, the oxidized and reduced forms of the potato tuber enzyme as well as a small subunit chimeric AGPase (MP), which contains both maize endosperm and potato tuber sequences paired with a wild-type maize large subunit. These data, combined with our previous kinetic studies of these enzymes led to a model of Pi inhibition for the various enzymes. The Pi inhibition data suggest that while the maize enzyme contains a single effector site that binds both 3-PGA and Pi, the other enzymes exhibit more complex behavior and most likely have at least two separate interacting binding sites for Pi. The possible physiological implications of the differences in Pi inhibition distinguishing the maize endosperm and potato tuber AGPases are discussed.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/química , Glucosa-1-Fosfato Adenililtransferasa/clasificación , Fosfatos/química , Tubérculos de la Planta/enzimología , Plantas Modificadas Genéticamente/enzimología , Solanum tuberosum/enzimología , Zea mays/enzimología , Activación Enzimática , Inhibidores Enzimáticos/química , Estabilidad de Enzimas , Solanum tuberosum/genética
16.
Plant Sci ; 181(3): 275-81, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21763538

RESUMEN

Improvements in plant productivity (biomass) and yield have centered on increasing the efficiency of leaf CO(2) fixation and utilization of products by non-photosynthetic sink organs. We had previously demonstrated a correlation between photosynthetic capacity, plant growth, and the extent of leaf starch synthesis utilizing starch-deficient mutants. This finding suggested that leaf starch is used as a transient photosynthetic sink to recycle inorganic phosphate and, in turn, maximize photosynthesis. To test this hypothesis, Arabidopsis thaliana and rice (Oryza sativa L.) lines were generated with enhanced capacity to make leaf starch with minimal impact on carbon partitioning to sucrose. The Arabidopsis engineered plants exhibited enhanced photosynthetic capacity; this translated into increased growth and biomass. These enhanced phenotypes were displayed by similarly engineered rice lines. Manipulation of leaf starch is a viable alternative strategy to increase photosynthesis and, in turn, the growth and yields of crop and bioenergy plants.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/metabolismo , Almidón/biosíntesis , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Transporte Biológico , Biomasa , Metabolismo de los Hidratos de Carbono , Productos Agrícolas/genética , Productos Agrícolas/metabolismo , Oryza/genética , Fosfatos/metabolismo , Fotosíntesis , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/metabolismo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Plantas Modificadas Genéticamente/metabolismo
17.
Arch Biochem Biophys ; 495(1): 82-92, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20045390

RESUMEN

Previous genetic studies have indicated that the type L alpha-glucan phosphorylase (Pho1) has an essential role during the initiation process of starch biosynthesis during rice seed development. To gain insight into its role in starch metabolism, we characterized the enzymatic properties of the Pho1 recombinant form. Pho1 has significantly higher catalytic efficiency toward both linear and branched alpha-glucans in the synthesis direction than in the degradation direction with equilibrium constants for the various substrates ranging from 13 to 45. Pho1 activity is strongly inhibited by its own reaction product (Pi) in the synthesis reaction (K(i)=0.69 mM) when amylopectin is the primer substrate, but this inhibition is less pronounced (K(i)=14.2 mM) when short alpha-glucan chains are used as primers. Interestingly, even in the presence of Pi alone, Pho1 not only degrades maltohexaose but also extends them to synthesize longer MOSs. Production of a broad spectrum of MOSs (G4-G19) was stimulated by both Pi and Glc1P in an additive fashion. Thus, even under physiological conditions of high Pi/Glc1P, Pho1 extends the chain length of short MOSs which can then be used as subsequent primer by starch synthase activities. As ADP-glucose strongly inhibits Pho1 activity, Pho1 likely operates only during the initial stage and not during maturation phase of starch synthesis.


Asunto(s)
Endospermo/enzimología , Oligosacáridos/metabolismo , Oryza/enzimología , Fosforilasas/metabolismo , Proteínas de Plantas/metabolismo , Expresión Génica , Fosforilasas/genética , Fosforilasas/aislamiento & purificación , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Almidón/metabolismo
18.
BMC Microbiol ; 8: 231, 2008 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-19099608

RESUMEN

BACKGROUND: Endophytic fungi are known plant symbionts. They produce a variety of beneficial metabolites for plant growth and survival, as well as defend their hosts from attack of certain pathogens. Coastal dunes are nutrient deficient and offer harsh, saline environment for the existing flora and fauna. Endophytic fungi may play an important role in plant survival by enhancing nutrient uptake and producing growth-promoting metabolites such as gibberellins and auxins. We screened roots of Ixeris repenes (L.) A. Gray, a common dune plant, for the isolation of gibberellin secreting endophytic fungi. RESULTS: We isolated 15 endophytic fungi from the roots of Ixeris repenes and screened them for growth promoting secondary metabolites. The fungal isolate IR-3-3 gave maximum plant growth when applied to waito-c rice and Atriplex gemelinii seedlings. Analysis of the culture filtrate of IR-3-3 showed the presence of physiologically active gibberellins, GA1, GA3, GA4 and GA7 (1.95 ng/ml, 3.83 ng/ml, 6.03 ng/ml and 2.35 ng/ml, respectively) along with other physiologically inactive GA5, GA9, GA12, GA15, GA19, GA20 and, GA24. The plant growth promotion and gibberellin producing capacity of IR-3-3 was much higher than the wild type Gibberella fujikuroi, which was taken as control during present study. GA5, a precursor of bioactive GA3 was reported for the first time in fungi. The fungal isolate IR-3-3 was identified as a new strain of Penicillium citrinum (named as P. citrinum KACC43900) through phylogenetic analysis of 18S rDNA sequence. CONCLUSION: Isolation of new strain of Penicillium citrinum from the sand dune flora is interesting as information on the presence of Pencillium species in coastal sand dunes is limited. The plant growth promoting ability of this fungal strain may help in conservation and revegetation of the rapidly eroding sand dune flora. Penicillium citrinum is already known for producing mycotoxin citrinin and cellulose digesting enzymes like cellulase and endoglucanase, as well as xylulase. Gibberellins producing ability of this fungus and the discovery about the presence of GA5 will open new aspects of research and investigations.


Asunto(s)
Atriplex/crecimiento & desarrollo , Giberelinas/farmacología , Oryza/crecimiento & desarrollo , Penicillium/aislamiento & purificación , Penicillium/metabolismo , Asteraceae/microbiología , Atriplex/efectos de los fármacos , Bioensayo , ADN de Hongos/genética , Gibberella/metabolismo , Giberelinas/aislamiento & purificación , Giberelinas/metabolismo , Oryza/clasificación , Oryza/efectos de los fármacos , Penicillium/genética , Filogenia , Raíces de Plantas/microbiología
19.
Plant Cell ; 20(7): 1833-49, 2008 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18621947

RESUMEN

Plastidial phosphorylase (Pho1) accounts for approximately 96% of the total phosphorylase activity in developing rice (Oryza sativa) seeds. From mutant stocks induced by N-methyl-N-nitrosourea treatment, we identified plants with mutations in the Pho1 gene that are deficient in Pho1. Strikingly, the size of mature seeds and the starch content in these mutants showed considerable variation, ranging from shrunken to pseudonormal. The loss of Pho1 caused smaller starch granules to accumulate and modified the amylopectin structure. Variation in the morphological and biochemical phenotype of individual seeds was common to all 15 pho1-independent homozygous mutant lines studied, indicating that this phenotype was caused solely by the genetic defect. The phenotype of the pho1 mutation was temperature dependent. While the mutant plants grown at 30 degrees C produced mainly plump seeds at maturity, most of the seeds from plants grown at 20 degrees C were shrunken, with a significant proportion showing severe reduction in starch accumulation. These results strongly suggest that Pho1 plays a crucial role in starch biosynthesis in rice endosperm at low temperatures and that one or more other factors can complement the function of Pho1 at high temperatures.


Asunto(s)
Mutación , Oryza/metabolismo , Fosforilasas/metabolismo , Proteínas de Plantas/metabolismo , Almidón/metabolismo , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Microscopía Electrónica de Rastreo , Modelos Biológicos , Datos de Secuencia Molecular , Oryza/genética , Oryza/ultraestructura , Fenotipo , Fosforilasas/genética , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/metabolismo , Plantas Modificadas Genéticamente/ultraestructura , Plastidios/enzimología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Semillas/genética , Semillas/metabolismo , Semillas/ultraestructura , Almidón/química , Almidón/ultraestructura , Temperatura
20.
J Biol Chem ; 283(11): 6640-7, 2008 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-18199755

RESUMEN

The higher plant ADP-glucose pyrophosphorylase is a heterotetramer consisting of two subunit types, which have evolved at different rates from a common ancestral gene. The potato tuber small subunit (SS) displays both catalytic and regulatory properties, whereas the exact role of the large subunit (LS), which contains substrate and effector binding sites, remains unresolved. We identified a mutation, S302N, which increased the solubility of the recombinant potato tuber LS and, in turn, enabling it to form a homotetrameric structure. The LS302N homotetramer possesses very little enzyme activity at a level 100-fold less than that seen for the unactivated SS homotetramer. Unlike the SS enzyme, however, the LS302N homotetramer enzyme is neither activated by the effector 3-phosphoglycerate nor inhibited by P(i). When combined with the catalytically silenced SS, S D143N, however, the LS302N-containing enzyme shows significantly enhanced catalytic activity and restored 3-PGA activation. This unmasking of catalytic and regulatory potential of the LS is conspicuously evident when the activities of the resurrected L(K41R.T51K.S302N) homotetramer are compared with its heterotetrameric form assembled with S D143N. Overall, these results indicate that the LS possesses catalytic and regulatory properties only when assembled with SS and that the net properties of the heterotetrameric enzyme is a product of subunit synergy.


Asunto(s)
Glucosa-1-Fosfato Adenililtransferasa/genética , Glucosa-1-Fosfato Adenililtransferasa/fisiología , Mutación , Solanum tuberosum/enzimología , Sitios de Unión , Catálisis , Dimerización , Relación Dosis-Respuesta a Droga , Ácidos Glicéricos/química , Glucógeno/química , Cinética , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...