Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Am Chem Soc ; 145(16): 9029-9038, 2023 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-37040606

RESUMEN

Size-tunable semiconducting two-dimensional (2D) nanosheets from conjugated homopolymers are promising materials for easy access to optoelectronic applications, but it has been challenging due to the low solubility of conjugated homopolymers. Herein, we report size-tunable and uniform semiconducting 2D nanorectangles via living crystallization-driven self-assembly (CDSA) of a fully conjugated polyenyne homopolymer prepared by cascade metathesis and metallotropy (M&M) polymerization. The resulting polyenyne with enhanced solubility successfully underwent living CDSA via biaxial growth mechanism, thereby producing 2D nanorectangles with sizes precisely tuned from 0.1 to 3.0 µm2 with narrow dispersity mostly less than 1.1 and low aspect ratios less than 3.1. Furthermore, living CDSA produced complex 2D block comicelles with different heights from various degrees of polymerization (DPs) of unimers. Based on diffraction analyses and DFT calculations, we proposed an interdigitating packing model with an orthorhombic crystal lattice of semiconducting 2D nanorectangles.

2.
J Am Chem Soc ; 144(13): 5921-5929, 2022 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-35271264

RESUMEN

Precise size control of semiconducting nanomaterials from polymers is crucial for optoelectronic applications, but the low solubility of conjugated polymers makes this challenging. Herein, we prepared length-controlled semiconducting one-dimensional (1D) nanoparticles by synchronous self-assembly during polymerization. First, we succeeded in unprecedented living polymerization of highly soluble conjugated poly(3,4-dihexylthiophene). Then, block copolymerization of poly(3,4-dihexylthiophene)-block-polythiophene spontaneously produced narrow-dispersed 1D nanoparticles with lengths from 15 to 282 nm according to the size of a crystalline polythiophene core. The key factors for high efficiency and length control are a highly solubilizing shell and slow polymerization of the core, thereby favoring nucleation elongation over isodesmic growth. Combining kinetics and high-resolution imaging analyses, we propose a unique mechanism called crystallization-driven in situ nanoparticlization of conjugated polymers (CD-INCP) where spontaneous nucleation creates seeds, followed by seeded growth in units of micelles. Also, we achieved "living" CD-INCP through a chain-extension experiment. We further simplified CD-INCP by adding both monomers together in one-shot copolymerization but still producing length-controlled nanoparticles.

3.
J Am Chem Soc ; 144(4): 1778-1785, 2022 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-34968031

RESUMEN

The development of white-light-emitting polymers has been actively pursued because of the importance of such polymers in various applications, such as lighting sources and displays. To generate white-light, numerous research efforts have focused on synthesizing multifluorophore-based random copolymers to effectively cover the entire visible region. However, due to their intrinsic synthetic and structural features, this strategy has limitations in securing color reproducibility and stability. Herein, we report the development of single-fluorophore-based white-light-emitting homopolymers with excellent color reproducibility. A powerful direct C-H amidation polymerization (DCAP) strategy enabled the synthesis of defect-free polysulfonamides that emit white-light via excited-state intramolecular proton-transfer (ESIPT). To gain structural insights for designing such polymers, we conducted detailed model studies by varying the electronic nature of substituents that allow facile tuning of the emission colors. Further analysis revealed precise control of the thermodynamics of the ESIPT process by fine-tuning the strength of the intramolecular hydrogen bond. By applying this design principle to polymerization, we successfully produced a series of well-defined polysulfonamides with single-fluorophore emitting white-light. The resulting polymers emitted consistent fluorescence, regardless of their molecular weights or phases (i.e., solution, powder, or thin film), guaranteeing excellent color reproducibility. With these advantages in hand, we also demonstrated practical use of our DCAP system by fabricating a white-light-emitting coated LED.

4.
J Am Chem Soc ; 143(29): 11180-11190, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34264077

RESUMEN

Catalyst-transfer polymerization has revolutionized the field of polymer synthesis due to its living character, but for a given catalyst system, the polymer scope is rather narrow. Herein we report a highly efficient Suzuki-Miyaura catalyst-transfer polymerization (SCTP) that covers a wide range of monomers from electron-rich (donor, D) to electron-deficient (acceptor, A) (hetero)arenes by rationally designing boronate monomers and using commercially available Buchwald RuPhos and SPhos Pd G3 precatalysts. Initially, we optimized the controlled polymerization of 3,4-propylenedioxythiophene (ProDOT), benzotriazole (BTz), quinoxaline (QX), and 2,3-diphenylquinoxaline (QXPh) by introducing new boronates, such as 4,4,8,8-tetramethyl-1,3,6,2-dioxazaborocane and its N-benzylated derivative, to modulate the reactivity and stability of the monomers. As a result, PProDOT, PBTz, PQX, and PQXPh were prepared with controlled molecular weight and narrow dispersity (D < 1.29) in excellent yield (>85%). A detailed investigation of the polymer structures using 1H NMR and MALDI-TOF spectrometry supported the chain-growth mechanism and the high initiation efficiency of the SCTP method. In addition, the use of RuPhos-Pd showing excellent catalyst-transfer ability on both D/A monomers led to unprecedented controlled D-A statistical copolymerization, thereby modulating the HOMO energy level (from -5.11 to -4.80 eV) and band gap energy (from 1.68 to 1.91 eV) of the resulting copolymers. Moreover, to demonstrate the living nature of SCTP, various combinations of D-A and A-A block copolymers (PBTz-b-PProDOT, PQX-b-PProDOT, and PQX-b-PBTz) were successfully prepared by the sequential addition method. Finally, simple but powerful one-shot D-A block copolymerization was achieved by maximizing the rate difference between a fast-propagating pinacol boronate donor and a slow-propagating acceptor to afford well-defined poly(3-hexylthiophene)-b-poly(benzotriazole).

5.
Org Lett ; 22(8): 2935-2940, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32243176

RESUMEN

We report a powerful strategy, iridium-catalyzed direct C-H amidation (DCA) for synthesizing various fluorescent sulfonamides that emit light over the entire visible spectrum with excellent efficiency (up to 99% yields). By controlling electronic characters of the resulting sulfonamides, a wide range of blue-to-red emissions was predictably obtained via an excited-state intramolecular proton-transfer process. Furthermore, we even succeeded in a white-light generation, highlighting that this DCA is an excellent synthetic method to prepare a library of fluorophores.

6.
Chem Sci ; 12(7): 2404-2409, 2020 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34164005

RESUMEN

[3,3]-Sigmatropic rearrangement is a powerful reaction to form C-C bonds stereospecifically; however, owing to intrinsic simultaneous bond formation and breakage, this versatile method has not been utilized in polymerization. Herein, we report a new tandem diaza-Cope rearrangement polymerization (DCRP) that can synthesize polymers with defect-free C-C bond formation from easy and efficient imine formation. A mechanistic investigation by in situ 1H NMR experiments suggests that this polymerization proceeds by a rapid DCR process, forming an enantiospecific C-C bond that occurs almost simultaneously with imine formation. This polymerization produces not only highly stable polymers against hydrolysis due to resonance-assisted hydrogen bonds (RAHBs) but also chiral polymers containing enantiopure salen moieties, which lead to high-performance Zn2+-selective turn-on chemosensors with up to 73-fold amplification. We also found that their optical activities and sensing performances are heavily dependent on the reaction temperature, which significantly affects the stereoselectivity of DCR.

7.
Angew Chem Int Ed Engl ; 56(46): 14474-14478, 2017 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-28921821

RESUMEN

We report a powerful strategy for activation of C-H bonds to produce polysulfonamides by an atom-economical and green method using iridium-catalyzed direct C-H amidation polymerization (DCAP). After screening various directing groups, additives, silver salts, concentrations, and temperatures to optimize DCAP, high-molecular-weight (up to 149 kDa) and defect-free polysulfonamides were synthesized from various bis-sulfonyl azides. Although these polymers do not have conventional fluorescent conjugated cores, they emit blue light with large Stokes shifts and high quantum yields upon photoexcitation owing to an excited-state intramolecular proton-transfer process.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA