Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(5): 056704, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38364117

RESUMEN

Here, we report the observation of strong coupling between magnons and surface acoustic wave (SAW) phonons in a thin CoFeB film constructed in an on-chip SAW resonator by analyzing SAW phonon dispersion anticrossings. We employ a nanostructured SAW resonator design that, in contrast to conventional SAW resonators, allows us to enhance shear-horizontal strain. Crucially, this type of strain couples strongly to magnons. Our device design provides the tunability of the film thickness with a fixed phonon wavelength, which is a departure from the conventional approach in strong magnon-phonon coupling research. We detect a monotonic increase in the coupling strength by expanding the film thickness, which agrees with our theoretical model. Our work offers a significant way to advance fundamental research and the development of devices based on magnon-phonon hybrid quasiparticles.

2.
Phys Rev Lett ; 131(17): 176701, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955488

RESUMEN

Phonons and magnons are engineered by periodic potential landscapes in phononic and magnonic crystals, and their combined studies may enable valley phonon transport tunable by the magnetic field. Through nonreciprocal surface acoustic wave transmission, we demonstrate valley-selective phonon-magnon scattering in magnetoelastic superlattices. The lattice symmetry and the out-of-plane magnetization component control the sign of nonreciprocity. The phonons in the valleys play a crucial role in generating nonreciprocal transmission by inducing circularly polarized strains that couple with the magnons. The transmission spectra show a nonreciprocity peak near a transmission gap, matching the phononic band structure. Our results open the way for manipulating valley phonon transport through periodically varying magnon-phonon coupling.

3.
Phys Rev Lett ; 131(19): 196701, 2023 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-38000412

RESUMEN

Harnessing the causal relationships between mechanical and magnetic properties of Van der Waals materials presents a wealth of untapped opportunity for scientific and technological advancement, from precision sensing to novel memories. This can, however, only be exploited if the means exist to efficiently interface with the magnetoelastic interaction. Here, we demonstrate acoustically driven spin-wave resonance in a crystalline antiferromagnet, chromium trichloride, via surface acoustic wave irradiation. The resulting magnon-phonon coupling is found to depend strongly on sample temperature and external magnetic field orientation, and displays a high sensitivity to extremely weak magnetic anisotropy fields in the few mT range. Our work demonstrates a natural pairing between power-efficient strain-wave technology and the excellent mechanical properties of Van der Waals materials, representing a foothold toward widespread future adoption of dynamic magnetoacoustics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...