Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Plants (Basel) ; 13(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39124175

RESUMEN

Plant growth, yield, and distribution are significantly impacted by abiotic stresses, affecting global ecosystems and forestry practices. However, plants have evolved complex adaptation mechanisms governed by numerous genes and transcription factors (TFs) to manage these stresses. Among these, bZIP (basic leucine zipper) is a crucial regulator orchestrating morphological adaptations. This review aims to elucidate the multifaceted roles of bZIP TFs in plant species. We discuss the morphological changes induced by stress stimuli and the pivotal functions of bZIP TFs in mediating these responses. While several publications have explored the mechanisms of bZIP TFs in response to abiotic stresses, this review delves into the intricate regulatory networks, summarizing alternative splicing and post-translational modifications, signaling networks interacting with bZIP TFs, and genetic engineering of bZIP TFs. By synthesizing current research, this review provides an updated discussion on bZIP interactions with other proteins to regulate stresses such as cold, heat, drought, and salt. Additionally, it offers avenues for future research and applications of bZIP TFs to improve abiotic stress resilience in plants through genetic engineering.

2.
BMC Genomics ; 25(1): 748, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39085785

RESUMEN

BACKGROUND: Liriodendron chinense is susceptible to extinction due to the increasing severity of abiotic stresses resulting from global climate change, consequently impacting its growth, development, and geographic distribution. However, the L. chinense remains pivotal in both socio-economic and ecological realms. The LRR-RLK (leucine-rich repeat receptor-like protein kinase) genes, constituting a substantial cluster of receptor-like kinases in plants, are crucial for plant growth and stress regulation and are unexplored in the L. chinense. RESULT: 233 LchiLRR-RLK genes were discovered, unevenly distributed across 17 chromosomes and 24 contigs. Among these, 67 pairs of paralogous genes demonstrated gene linkages, facilitating the expansion of the LchiLRR-RLK gene family through tandem (35.82%) and segmental (64.18%) duplications. The synonymous and nonsynonymous ratios showed that the LchiLRR-RLK genes underwent a purifying or stabilizing selection during evolution. Investigations in the conserved domain and protein structures revealed that the LchiLRR-RLKs are highly conserved, carrying conserved protein kinase and leucine-rich repeat-like domians that promote clustering in different groups implicating gene evolutionary conservation. A deeper analysis of LchiLRR-RLK full protein sequences phylogeny showed 13 groups with a common ancestor protein. Interspecies gene collinearity showed more orthologous gene pairs between L. chinense and P. trichocarpa, suggesting various similar biological functions between the two plant species. Analysis of the functional roles of the LchiLRR-RLK genes using the qPCR demonstrated that they are involved in cold, heat, and salt stress regulation, especially, members of subgroups VIII, III, and Xa. CONCLUSION: Conclusively, the LRR-RLK genes are conserved in L. chinense and function to regulate the temperature and salt stresses, and this research provides new insights into understanding LchiLRR-RLK genes and their regulatory effects in abiotic stresses.


Asunto(s)
Evolución Molecular , Liriodendron , Filogenia , Proteínas Quinasas , Estrés Fisiológico , Estrés Fisiológico/genética , Liriodendron/genética , Proteínas Quinasas/genética , Proteínas Quinasas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas , Proteínas Repetidas Ricas en Leucina , Genoma de Planta
3.
Crit Rev Biotechnol ; : 1-18, 2024 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-38797669

RESUMEN

Mitogen-activated protein Kinase Kinase 5 (MKK5) is a central hub in the complex phosphorylation chain reaction of the Mitogen-activated protein kinases (MAPK) cascade, regulating plant responses to biotic and abiotic stresses. This review manuscript aims to provide a comprehensive analysis of the regulatory mechanism of the MKK5 involved in stress adaptation. This review will delve into the intricate post-transcriptional and post-translational modifications of the MKK5, discussing how they affect its expression, activity, and subcellular localization in response to stress signals. We also discuss the integration of the MKK5 into complex signaling pathways, orchestrating plant immunity against pathogens and its modulating role in regulating abiotic stresses, such as: drought, cold, heat, and salinity, through the phytohormonal signaling pathways. Furthermore, we highlight potential applications of the MKK5 for engineering stress-resilient crops and provide future perspectives that may pave the way for future studies. This review manuscript aims to provide valuable insights into the mechanisms underlying MKK5 regulation, bridge the gap from numerous previous findings, and offer a firm base in the knowledge of MKK5, its regulating roles, and its involvement in environmental stress regulation.

4.
Funct Integr Genomics ; 24(2): 50, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441816

RESUMEN

The CRISPR/Cas systems have emerged as transformative tools for precisely manipulating plant genomes and enhancement. It has provided unparalleled applications from modifying the plant genomes to resistant enhancement. This review manuscript summarises the mechanism, application, and current challenges in the CRISPR/Cas genome editing technology. It addresses the molecular mechanisms of different Cas genes, elucidating their applications in various plants through crop improvement, disease resistance, and trait improvement. The advent of the CRISPR/Cas systems has enabled researchers to precisely modify plant genomes through gene knockouts, knock-ins, and gene expression modulation. Despite these successes, the CRISPR/Cas technology faces challenges, including off-target effects, Cas toxicity, and efficiency. In this manuscript, we also discuss these challenges and outline ongoing strategies employed to overcome these challenges, including the development of novel CRISPR/Cas variants with improved specificity and specific delivery methods for different plant species. The manuscript will conclude by addressing the future perspectives of the CRISPR/Cas technology in plants. Although this review manuscript is not conclusive, it aims to provide immense insights into the current state and future potential of CRISPR/Cas in sustainable and secure plant production.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , Humanos , Resistencia a la Enfermedad , Técnicas de Inactivación de Genes , Genoma de Planta
5.
Plants (Basel) ; 12(12)2023 Jun 16.
Artículo en Inglés | MEDLINE | ID: mdl-37375974

RESUMEN

The Liriodendron chinense in the Magnoliaceae family is an endangered tree species useful for its socio-economic and ecological benefits. Abiotic stresses (cold, heat, and drought stress), among other factors, affect its growth, development, and distribution. However, GATA transcription factors (TFs) respond to various abiotic stresses and play a significant role in plant acclimatization to abiotic stresses. To determine the function of GATA TFs in L. chinense, we investigated the GATA genes in the genome of L. chinense. In this study, a total of 18 GATA genes were identified, which were randomly distributed on 12 of the total 17 chromosomes. These GATA genes clustered together in four separate groups based on their phylogenetic relationships, gene structures, and domain conservation arrangements. Detailed interspecies phylogenetic analyses of the GATA gene family demonstrated a conservation of the GATAs and a probable diversification that prompted gene diversification in plant species. In addition, the LcGATA gene family was shown to be evolutionarily closer to that of O. sativa, giving an insight into the possible LcGATA gene functions. Investigations of LcGATA gene duplication showed four gene duplicate pairs by the segmental duplication event, and these genes were a result of strong purified selection. Analysis of the cis-regulatory elements demonstrated a significant representation of the abiotic stress elements in the promoter regions of the LcGATA genes. Additional gene expressions through transcriptome and qPCR analyses revealed a significant upregulation of LcGATA17, and LcGATA18 in various stresses, including heat, cold, and drought stress in all time points analyzed. We concluded that the LcGATA genes play a pivotal role in regulating abiotic stress in L. chinense. In summary, our results provide new insights into understanding of the LcGATA gene family and their regulatory functions during abiotic stresses.

6.
Plants (Basel) ; 12(3)2023 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-36771604

RESUMEN

Heavy metal pollution possesses potential hazards to plant, animal and human health, which has become the focus of recent attention. Hence, phytoremediation has been regarded as one of the most important remediation technologies for heavy-metal-contaminated soils. In this research, a dominant mine tailing plant, Macleaya cordata, was used as the experimental material to compare the metal transport and oxidative stress response in its roots under lead (Pb) and zinc (Zn) treatments. The result showed that Pb was mainly accumulated in the roots of M. cordata under the Pb treatment; less than 1% Pb was transported to the parts above. An analysis of the Zn content demonstrated a 39% accumulation in the shoots. The production of reactive oxygen species was detected using the in situ histological staining of roots, which showed that hydrogen peroxide in the root tips was observed to increase with the increase in both Pb and Zn concentrations. No significant superoxide anion changes were noted in the root tips under the Pb treatment. An analysis of the root enzyme activity showed that increase in NADPH oxidase activity can be responsible for the production of superoxide anions, subsequent the inhibition of root growth and decrease in antioxidant enzyme activities in the roots of M. cordata exposed to excess Zn. In total, this research provides evidence that the root of M. cordata has a high antioxidant capacity for Pb stress, so it can accumulate more Pb without oxidative damage. On the other hand, the Zn accumulated in the roots of M. cordata causes oxidative damage to the root tips, which can stimulate more Zn transport to the shoots to reduce the damage to the roots. This result will provide a basis for the application of M. cordata in the phytoremediation of soil polluted by Pb-Zn compounds.

7.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-36499378

RESUMEN

Heat shock proteins (HSPs) are conserved molecular chaperones whose main role is to facilitate the regulation of plant growth and stress responses. The HSP gene family has been characterized in most plants and elucidated as generally stress-induced, essential for their cytoprotective roles in cells. However, the HSP gene family has not yet been analyzed in the Liriodendron chinense genome. In current study, 60 HSP genes were identified in the L. chinense genome, including 7 LchiHSP90s, 23 LchiHSP70s, and 30 LchiHSP20s. We investigated the phylogenetic relationships, gene structure and arrangement, gene duplication events, cis-acting elements, 3D-protein structures, protein-protein interaction networks, and temperature stress responses in the identified L. chinense HSP genes. The results of the comparative phylogenetic analysis of HSP families in 32 plant species showed that LchiHSPs are closely related to the Cinnamomum kanehirae HSP gene family. Duplication events analysis showed seven segmental and six tandem duplication events that occurred in the LchiHSP gene family, which we speculated to have played an important role in the LchiHSP gene expansion and evolution. Furthermore, the Ka/Ks analysis indicated that these genes underwent a purifying selection. Analysis in the promoter region evidenced that the promoter region LchiHSPs carry many stress-responsive and hormone-related cis-elements. Investigations in the gene expression patterns of the LchiHSPs using transcriptome data and the qRT-PCR technique indicated that most LchiHSPs were responsive to cold and heat stress. In total, our results provide new insights into understanding the LchiHSP gene family function and their regulatory mechanisms in response to abiotic stresses.


Asunto(s)
Proteínas de Choque Térmico , Liriodendron , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Liriodendron/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque Térmico/genética , Estrés Fisiológico/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Genoma de Planta
8.
Front Genet ; 13: 1060546, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36437962

RESUMEN

The TEOSINTE BRANCHED1 (TBI1), CYCLOIDEA (CYC), and PROLIFERATING CELL NUCLEAR ANTIGEN FACTORS (PCF1 and PCF2) proteins truncated as TCP transcription factors carry conserved basic-helix-loop-helix (bHLH) structure, related to DNA binding functions. Evolutionary history of the TCP genes has shown their presence in early land plants. In this paper, we performed a comparative discussion on the current knowledge of the TCP Transcription Factors in lower and higher plants: their evolutionary history based on the phylogenetics of 849 TCP proteins from 37 plant species, duplication events, and biochemical roles in some of the plants species. Phylogenetics investigations confirmed the classification of TCP TFs into Class I (the PCF1/2), and Class II (the C- clade) factors; the Class II factors were further divided into the CIN- and CYC/TB1- subclade. A trace in the evolution of the TCP Factors revealed an absence of the CYC/TB1subclade in lower plants, and an independent evolution of the CYC/TB1subclade in both eudicot and monocot species. 54% of the total duplication events analyzed were biased towards the dispersed duplication, and we concluded that dispersed duplication events contributed to the expansion of the TCP gene family. Analysis in the TCP factors functional roles confirmed their involvement in various biochemical processes which mainly included promoting cell proliferation in leaves in Class I TCPs, and cell division during plant development in Class II TCP Factors. Apart from growth and development, the TCP Factors were also shown to regulate hormonal and stress response pathways. Although this paper does not exhaust the present knowledge of the TCP Transcription Factors, it provides a base for further exploration of the gene family.

9.
Front Plant Sci ; 13: 1035627, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420021

RESUMEN

The basic leucine zipper (bZIP) is a transcription factor family that plays critical roles in abiotic and biotic stress responses as well as plant development and growth. A comprehensive genome-wide study in Liriodendron chinense was conducted to identify 45 bZIP transcription factors (LchibZIPs), which were divided into 13 subgroups according the phylogenetic analysis. Proteins in the same subgroup shared similar gene structures and conserved domains, and a total of 20 conserved motifs were revealed in LchibZIP proteins. Gene localization analysis revealed that LchibZIP genes were unequally distributed across 16 chromosomes, and that 4 pairs of tandem and 9 segmental gene duplications existed. Concluding that segmental duplication events may be strongly associated with the amplification of the L. chinense bZIP gene family. We also assessed the collinearity of LchibZIPs between the Arabidopsis and Oryza and showed that the LchibZIP is evolutionarily closer to O. sativa as compared to the A. thaliana. The cis-regulatory element analysis showed that LchibZIPs clustered in one subfamily are involved in several functions. In addition, we gathered novel research suggestions for further exploration of the new roles of LchibZIPs from protein-protein interactions and gene ontology annotations of the LchibZIP proteins. Using the RNA-seq data and qRT-PCR we analyzed the gene expression patterns of LchibZIP genes, and showed that LchibZIP genes regulate cold stress, especially LchibZIP4 and LchibZIP7; and LchibZIP2 and LchibZIP28 which were up-regulated and down-regulated by cold stress, respectively. Studies of genetic engineering and gene function in L. chinense can benefit greatly from the thorough investigation and characterization of the L. chinense bZIP gene family.

10.
Int J Mol Sci ; 23(17)2022 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-36077571

RESUMEN

CRISPR/Cas-based genome editing technology provides straightforward, proficient, and multifunctional ways for the site-directed modification of organism genomes and genes. The application of CRISPR-based technology in plants has a vast potential value in gene function research, germplasm innovation, and genetic improvement. The complexity of woody plants genome may pose significant challenges in the application and expansion of various new editing techniques, such as Cas9, 12, 13, and 14 effectors, base editing, particularly for timberland species with a long life span, huge genome, and ploidy. Therefore, many novel optimisms have been drawn to molecular breeding research based on woody plants. This review summarizes the recent development of CRISPR/Cas applications for essential traits, including wood properties, flowering, biological stress, abiotic stress, growth, and development in woody plants. We outlined the current problems and future development trends of this technology in germplasm and the improvement of products in woody plants.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica , Genoma de Planta/genética , Árboles/genética , Edición Génica/métodos , Madera/genética
11.
Plants (Basel) ; 11(13)2022 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-35807653

RESUMEN

Rice blast disease caused by a fungus, Magnaporthe grisea, is one of the most destructive diseases in rice production worldwide, and salicylic acid (SA) can efficiently decrease the damage of M. grisea. Here, we combined the 2-Dimensional-Liquid Chromatography and the Matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (2D-LC-MALDI-TOF-TOF MS) techniques to compare and identify differentially expressed labelled proteins by the isobaric tags for relative and absolute quantitation (iTRAQ) between the blast-resistant cultivar Minghui and the susceptible rice cultivar Nipponbare in response to blast fungus infection. The group samples were treated with salicylic acid and compared to control samples. A total of 139 DEPs from the two cultivars showed either more than a two-fold change or alternating regulation patterns. Protein functionality analysis also exhibited that these proteins are involved in a wide range of molecular functions including: energy-related activity (30%), signal transduction (11%), redox homeostasis (15%), amino acid and nitrogen metabolism (4%), carbohydrate metabolism (5%), protein folding and assembly (10%), protein hydrolysis (9%), protein synthesis (12%), and other unknown functions (4%). Specifically, we demonstrated that exogenous treatment with salicylic acid promoted recovery in both rice cultivars from Magnaporthe grisea infection by enhancing: the regulation of signal transduction, increasing energy conversion and production through the regulation of the glycolytic pathway, and other various biochemical processes. These findings may facilitate future studies of the molecular mechanisms of rice blast resistance.

12.
Pest Manag Sci ; 78(6): 2629-2642, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35362207

RESUMEN

BACKGROUND: α-linolenic acid is an essential unsaturated fatty acid in organisms. However, there is a large gap between α-linolenic acid accumulation and its synthesis mechanism in insects. Fatty acid synthases (FASs) and desaturases (Desats) are vital enzymes required for the synthesis of unsaturated fatty acids. RESULTS: The pupae of Glyphodes pyloalis (Lepidoptera: Pyralidae), which is a destructive pest of mulberry trees, contain the highest level of α-linolenic acid compared to other life-history stages. To further explore the synthesis mechanism of α-linolenic acid in G. pyloalis pupae, we constructed a pupal transcriptome dataset and identified 106 genes related to fatty acid metabolism from it. Among these, two fatty acid synthases (GpylFAS) and five desaturases (GpylDesat) were identified. A qRT-PCR validation revealed that GpylFAS1 and GpylDesat1, 2, 3, 5 were expressed highest at pupal stages. Furthermore, the content of α-linolenic acid decreased significantly after silencing GpylFAS1 and GpylDesat5, respectively. Besides, knocking down GpylFAS1 or GpylDesat5 resulted in more malformed pupae and adults, as well as lower emergence rates. Meanwhile, silencing GpylFAS1 or GpylDesat5 affected the expressions of the other GpylFASs and GpylDesats. CONCLUSION: The present results illustrate the pivotal function of FASs and Desats in α-linolenic acid biosynthesis and metamorphosis in insects. Our research also broadens the sources of unsaturated fatty acids, especially for α-linolenic acid from insects, and provides novel insights for the management of mulberry insect pests from the perspective of utilization rather than control. © 2022 Society of Chemical Industry.


Asunto(s)
Morus , Mariposas Nocturnas , Animales , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Ácido Graso Sintasas/metabolismo , Mariposas Nocturnas/genética , Pupa/genética , Ácido alfa-Linolénico/metabolismo
13.
Int J Mol Sci ; 23(3)2022 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-35163471

RESUMEN

Cold stress limits plant geographical distribution and influences plant growth, development, and yields. Plants as sessile organisms have evolved complex biochemical and physiological mechanisms to adapt to cold stress. These mechanisms are regulated by a series of transcription factors and proteins for efficient cold stress acclimation. It has been established that the ICE-CBF-COR signaling pathway in plants regulates how plants acclimatize to cold stress. Cold stress is perceived by receptor proteins, triggering signal transduction, and Inducer of CBF Expression (ICE) genes are activated and regulated, consequently upregulating the transcription and expression of the C-repeat Binding Factor (CBF) genes. The CBF protein binds to the C-repeat/Dehydration Responsive Element (CRT/DRE), a homeopathic element of the Cold Regulated genes (COR gene) promoter, activating their transcription. Transcriptional regulations and post-translational modifications regulate and modify these entities at different response levels by altering their expression or activities in the signaling cascade. These activities then lead to efficient cold stress tolerance. This paper contains a concise summary of the ICE-CBF-COR pathway elucidating on the cross interconnections with other repressors, inhibitors, and activators to induce cold stress acclimation in plants.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Respuesta al Choque por Frío , Regulación de la Expresión Génica de las Plantas , Fenómenos Fisiológicos de las Plantas , Procesamiento Proteico-Postraduccional , Transducción de Señal , Transactivadores , Activación Transcripcional
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...