Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
Nat Commun ; 15(1): 3980, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730231

RESUMEN

Schizophrenia is a complex neuropsychiatric disorder with sexually dimorphic features, including differential symptomatology, drug responsiveness, and male incidence rate. Prior large-scale transcriptome analyses for sex differences in schizophrenia have focused on the prefrontal cortex. Analyzing BrainSeq Consortium data (caudate nucleus: n = 399, dorsolateral prefrontal cortex: n = 377, and hippocampus: n = 394), we identified 831 unique genes that exhibit sex differences across brain regions, enriched for immune-related pathways. We observed X-chromosome dosage reduction in the hippocampus of male individuals with schizophrenia. Our sex interaction model revealed 148 junctions dysregulated in a sex-specific manner in schizophrenia. Sex-specific schizophrenia analysis identified dozens of differentially expressed genes, notably enriched in immune-related pathways. Finally, our sex-interacting expression quantitative trait loci analysis revealed 704 unique genes, nine associated with schizophrenia risk. These findings emphasize the importance of sex-informed analysis of sexually dimorphic traits, inform personalized therapeutic strategies in schizophrenia, and highlight the need for increased female samples for schizophrenia analyses.


Asunto(s)
Núcleo Caudado , Corteza Prefontal Dorsolateral , Hipocampo , Sitios de Carácter Cuantitativo , Esquizofrenia , Caracteres Sexuales , Humanos , Esquizofrenia/genética , Esquizofrenia/metabolismo , Femenino , Masculino , Hipocampo/metabolismo , Núcleo Caudado/metabolismo , Corteza Prefontal Dorsolateral/metabolismo , Adulto , Transcriptoma , Perfilación de la Expresión Génica , Factores Sexuales , Cromosomas Humanos X/genética , Corteza Prefrontal/metabolismo
2.
bioRxiv ; 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38712125

RESUMEN

The lateral septum (LS) is a midline, subcortical structure, which regulates social behaviors that are frequently impaired in neurodevelopmental disorders including schizophrenia and autism spectrum disorder. Mouse studies have identified neuronal populations within the LS that express a variety of molecular markers, including vasopressin receptor, oxytocin receptor, and corticotropin releasing hormone receptor, that control specific facets of social behavior. Despite its critical role in the regulation of social behavior and notable gene expression patterns, comprehensive molecular profiling of the human LS has not been performed. Here, we conducted single nucleus RNA-sequencing (snRNA-seq) to generate the first transcriptomic profiles of the human LS using postmortem human brain tissue samples from 3 neurotypical donors. Our analysis identified 4 transcriptionally distinct neuronal cell types within the human LS that are enriched for TRPC4 , the gene encoding Trp-related protein 4. Differential expression analysis revealed a distinct LS neuronal cell type that is enriched for OPRM1 , the gene encoding the µ-opioid receptor. Leveraging recently collected mouse LS snRNA-seq datasets, we also conducted a cross-species analysis. Our results demonstrate that TRPC4 enrichment in the LS is highly conserved between human and mouse, while FREM2 , which encodes FRAS1 related extracellular matrix protein 2, is enriched only in the human LS. Together, these results highlight transcriptional heterogeneity of the human LS, and identify robust marker genes for the human LS.

3.
bioRxiv ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38712198

RESUMEN

The hippocampus contains many unique cell types, which serve the structure's specialized functions, including learning, memory and cognition. These cells have distinct spatial topography, morphology, physiology, and connectivity, highlighting the need for transcriptome-wide profiling strategies that retain cytoarchitectural organization. Here, we generated spatially-resolved transcriptomics (SRT) and single-nucleus RNA-sequencing (snRNA-seq) data from adjacent tissue sections of the anterior human hippocampus across ten adult neurotypical donors. We defined molecular profiles for hippocampal cell types and spatial domains. Using non-negative matrix factorization and transfer learning, we integrated these data to define gene expression patterns within the snRNA-seq data and infer the expression of these patterns in the SRT data. With this approach, we leveraged existing rodent datasets that feature information on circuit connectivity and neural activity induction to make predictions about axonal projection targets and likelihood of ensemble recruitment in spatially-defined cellular populations of the human hippocampus. Finally, we integrated genome-wide association studies with transcriptomic data to identify enrichment of genetic components for neurodevelopmental, neuropsychiatric, and neurodegenerative disorders across cell types, spatial domains, and gene expression patterns of the human hippocampus. To make this comprehensive molecular atlas accessible to the scientific community, both raw and processed data are freely available, including through interactive web applications.

4.
Nat Commun ; 15(1): 3342, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38688917

RESUMEN

The polygenic architecture of schizophrenia implicates several molecular pathways involved in synaptic function. However, it is unclear how polygenic risk funnels through these pathways to translate into syndromic illness. Using tensor decomposition, we analyze gene co-expression in the caudate nucleus, hippocampus, and dorsolateral prefrontal cortex of post-mortem brain samples from 358 individuals. We identify a set of genes predominantly expressed in the caudate nucleus and associated with both clinical state and genetic risk for schizophrenia that shows dopaminergic selectivity. A higher polygenic risk score for schizophrenia parsed by this set of genes predicts greater dopamine synthesis in the striatum and greater striatal activation during reward anticipation. These results translate dopamine-linked genetic risk variation into in vivo neurochemical and hemodynamic phenotypes in the striatum that have long been implicated in the pathophysiology of schizophrenia.


Asunto(s)
Cuerpo Estriado , Dopamina , Esquizofrenia , Humanos , Dopamina/metabolismo , Dopamina/biosíntesis , Esquizofrenia/genética , Esquizofrenia/metabolismo , Masculino , Femenino , Cuerpo Estriado/metabolismo , Adulto , Núcleo Caudado/metabolismo , Transducción de Señal , Persona de Mediana Edad , Hipocampo/metabolismo , Herencia Multifactorial , Predisposición Genética a la Enfermedad , Corteza Prefontal Dorsolateral/metabolismo , Recompensa
5.
bioRxiv ; 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38463979

RESUMEN

Importance: Habenula (Hb) pathophysiology is involved in many neuropsychiatric disorders, including schizophrenia. Deep brain stimulation and pharmacological targeting of the Hb are emerging as promising therapeutic treatments. However, little is known about the cell type-specific transcriptomic organization of the human Hb or how it is altered in schizophrenia. Objective: To define the molecular neuroanatomy of the human habenula and identify transcriptomic changes in individuals with schizophrenia compared to neurotypical controls. Design Setting and Participants: This study utilized Hb-enriched postmortem human brain tissue. Single nucleus RNA-sequencing (snRNA-seq) and single molecule fluorescent in situ hybridization (smFISH) experiments were conducted to identify molecularly defined Hb cell types and map their spatial location (n=3-7 donors). Bulk RNA-sequencing and cell type deconvolution were used to investigate transcriptomic changes in Hb-enriched tissue from 35 individuals with schizophrenia and 33 neurotypical controls. Gene expression changes associated with schizophrenia in the Hb were compared to those previously identified in the dorsolateral prefrontal cortex (DLPFC), hippocampus, and caudate. Main Outcomes and Measures: Semi-supervised snRNA-seq cell type clustering. Transcript visualization and quantification of smFISH probes. Bulk RNA-seq cell type deconvolution using reference snRNA-seq data. Schizophrenia-associated gene differential expression analysis adjusting for Hb and thalamus fractions, RNA degradation-associated quality surrogate variables, and other covariates. Cross-brain region schizophrenia-associated gene expression comparison. Results: snRNA-seq identified 17 cell type clusters across 16,437 nuclei, including 3 medial and 7 lateral Hb populations. Cell types were conserved with those identified in a rodent model. smFISH for cell type marker genes validated snRNA-seq Hb cell types and depicted the spatial organization of subpopulations. Bulk RNA-seq analyses yielded 45 schizophrenia-associated differentially expressed genes (FDR < 0.05), with 32 (71%) unique to Hb-enriched tissue. Conclusions: These results identify topographically organized cell types with distinct molecular signatures in the human Hb. They further demonstrate unique transcriptomic changes in the epithalamus associated with schizophrenia, thereby providing molecular insights into the role of Hb in neuropsychiatric disorders.

6.
bioRxiv ; 2024 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-38405805

RESUMEN

Background: Cellular deconvolution of bulk RNA-sequencing (RNA-seq) data using single cell or nuclei RNA-seq (sc/snRNA-seq) reference data is an important strategy for estimating cell type composition in heterogeneous tissues, such as human brain. Computational methods for deconvolution have been developed and benchmarked against simulated data, pseudobulked sc/snRNA-seq data, or immunohistochemistry reference data. A major limitation in developing improved deconvolution algorithms has been the lack of integrated datasets with orthogonal measurements of gene expression and estimates of cell type proportions on the same tissue sample. Deconvolution algorithm performance has not yet been evaluated across different RNA extraction methods (cytosolic, nuclear, or whole cell RNA), different library preparation types (mRNA enrichment vs. ribosomal RNA depletion), or with matched single cell reference datasets. Results: A rich multi-assay dataset was generated in postmortem human dorsolateral prefrontal cortex (DLPFC) from 22 tissue blocks. Assays included spatially-resolved transcriptomics, snRNA-seq, bulk RNA-seq (across six library/extraction RNA-seq combinations), and RNAScope/Immunofluorescence (RNAScope/IF) for six broad cell types. The Mean Ratio method, implemented in the DeconvoBuddies R package, was developed for selecting cell type marker genes. Six computational deconvolution algorithms were evaluated in DLPFC and predicted cell type proportions were compared to orthogonal RNAScope/IF measurements. Conclusions: Bisque and hspe were the most accurate methods, were robust to differences in RNA library types and extractions. This multi-assay dataset showed that cell size differences, marker genes differentially quantified across RNA libraries, and cell composition variability in reference snRNA-seq impact the accuracy of current deconvolution methods.

7.
bioRxiv ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38328094

RESUMEN

DNA methylation (DNAm), a crucial epigenetic mark, plays a key role in gene regulation, mammalian development, and various human diseases. Single-cell technologies enable the profiling of DNAm states at cytosines within the DNA sequence of individual cells, but they often suffer from limited coverage of CpG sites. In this study, we introduce scMeFormer, a transformer-based deep learning model designed to impute DNAm states for each CpG site in single cells. Through comprehensive evaluations, we demonstrate the superior performance of scMeFormer compared to alternative models across four single-nucleus DNAm datasets generated by distinct technologies. Remarkably, scMeFormer exhibits high-fidelity imputation, even when dealing with significantly reduced coverage, as low as 10% of the original CpG sites. Furthermore, we applied scMeFormer to a single-nucleus DNAm dataset generated from the prefrontal cortex of four schizophrenia patients and four neurotypical controls. This enabled the identification of thousands of differentially methylated regions associated with schizophrenia that would have remained undetectable without imputation and added granularity to our understanding of epigenetic alterations in schizophrenia within specific cell types. Our study highlights the power of deep learning in imputing DNAm states in single cells, and we expect scMeFormer to be a valuable tool for single-cell DNAm studies.

8.
Sci Rep ; 14(1): 3291, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38332235

RESUMEN

Primary human trophoblast stem cells (TSCs) and TSCs derived from human pluripotent stem cells (hPSCs) can potentially model placental processes in vitro. Yet, the pluripotent states and factors involved in the differentiation of hPSCs to TSCs remain poorly understood. In this study, we demonstrate that the primed pluripotent state can generate TSCs by activating pathways such as Epidermal Growth Factor (EGF) and Wingless-related integration site (WNT), and by suppressing tumor growth factor beta (TGFß), histone deacetylases (HDAC), and Rho-associated protein kinase (ROCK) signaling pathways, all without the addition of exogenous Bone morphogenetic protein 4 (BMP4)-a condition we refer to as the TS condition. We characterized this process using temporal single-cell RNA sequencing to compare TS conditions with differentiation protocols involving BMP4 activation alone or BMP4 activation in conjunction with WNT inhibition. The TS condition consistently produced a stable, proliferative cell type that closely mimics first-trimester placental cytotrophoblasts, marked by the activation of endogenous retroviral genes and the absence of amnion expression. This was observed across multiple cell lines, including various primed induced pluripotent stem cell (iPSC) and embryonic stem cell (ESC) lines. Primed-derived TSCs can proliferate for over 30 passages and further specify into multinucleated syncytiotrophoblasts and extravillous trophoblast cells. Our research establishes that the differentiation of primed hPSCs to TSC under TS conditions triggers the induction of TMSB4X, BMP5/7, GATA3, and TFAP2A without progressing through a naive state. These findings propose that the primed hPSC state is part of a continuum of potency with the capacity to differentiate into TSCs through multiple routes.


Asunto(s)
Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Femenino , Embarazo , Placenta , Diferenciación Celular/genética , Trofoblastos/metabolismo , Proteína Morfogenética Ósea 5/metabolismo
9.
medRxiv ; 2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38293028

RESUMEN

Background: Alcohol use disorder (AUD) has a profound public health impact. However, understanding of the molecular mechanisms underlying the development and progression of AUD remain limited. Here, we interrogate AUD-associated DNA methylation (DNAm) changes within and across addiction-relevant brain regions: the nucleus accumbens (NAc) and dorsolateral prefrontal cortex (DLPFC). Methods: Illumina HumanMethylation EPIC array data from 119 decedents of European ancestry (61 cases, 58 controls) were analyzed using robust linear regression, with adjustment for technical and biological variables. Associations were characterized using integrative analyses of public gene regulatory data and published genetic and epigenetic studies. We additionally tested for brain region-shared and -specific associations using mixed effects modeling and assessed implications of these results using public gene expression data. Results: At a false discovery rate ≤ 0.05, we identified 53 CpGs significantly associated with AUD status for NAc and 31 CpGs for DLPFC. In a meta-analysis across the regions, we identified an additional 21 CpGs associated with AUD, for a total of 105 unique AUD-associated CpGs (120 genes). AUD-associated CpGs were enriched in histone marks that tag active promoters and our strongest signals were specific to a single brain region. Of the 120 genes, 23 overlapped with previous genetic associations for substance use behaviors; all others represent novel associations. Conclusions: Our findings identify AUD-associated methylation signals, the majority of which are specific within NAc or DLPFC. Some signals may constitute predisposing genetic and epigenetic variation, though more work is needed to further disentangle the neurobiological gene regulatory differences associated with AUD.

10.
Elife ; 122024 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-38266073

RESUMEN

Norepinephrine (NE) neurons in the locus coeruleus (LC) make long-range projections throughout the central nervous system, playing critical roles in arousal and mood, as well as various components of cognition including attention, learning, and memory. The LC-NE system is also implicated in multiple neurological and neuropsychiatric disorders. Importantly, LC-NE neurons are highly sensitive to degeneration in both Alzheimer's and Parkinson's disease. Despite the clinical importance of the brain region and the prominent role of LC-NE neurons in a variety of brain and behavioral functions, a detailed molecular characterization of the LC is lacking. Here, we used a combination of spatially-resolved transcriptomics and single-nucleus RNA-sequencing to characterize the molecular landscape of the LC region and the transcriptomic profile of LC-NE neurons in the human brain. We provide a freely accessible resource of these data in web-accessible and downloadable formats.


Asunto(s)
Locus Coeruleus , Núcleo Solitario , Humanos , Perfilación de la Expresión Génica , Sistema Nervioso Central , Norepinefrina , Expresión Génica
11.
bioRxiv ; 2023 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-38045413

RESUMEN

The dentate gyrus of the anterior hippocampus is important for many human cognitive functions, including regulation of learning, memory, and mood. However, the postnatal development and aging of the dentate gyrus throughout the human lifespan has yet to be fully characterized in the same molecular and spatial detail as other species. Here, we generated a spatially-resolved molecular atlas of the dentate gyrus in postmortem human tissue using the 10x Genomics Visium platform to retain extranuclear transcripts and identify changes in molecular topography across the postnatal lifespan. We found enriched expression of extracellular matrix markers during infancy and increased expression of GABAergic cell-type markers GAD1, LAMP5, and CCK after infancy. While we identified a conserved gene signature for mouse neuroblasts in the granule cell layer (GCL), many of those genes are not specific to the GCL, and we found no evidence of signatures for other granule cell lineage stages at the GCL post-infancy. We identified a wide-spread hippocampal aging signature and an age-dependent increase in neuroinflammation associated genes. Our findings suggest major changes to the putative neurogenic niche after infancy and identify molecular foci of brain aging in glial and neuropil enriched tissue.

12.
medRxiv ; 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37961425

RESUMEN

INTRODUCTION: The APOE gene is the strongest genetic risk factor for late-onset Alzheimer's Disease (LOAD). However, the gene regulatory mechanisms at this locus have not been fully characterized. METHODS: To identify novel AD-linked functional elements within the APOE locus, we integrated SNP variants with RNA-seq, DNA methylation, and ChIP-seq data from human postmortem brains. RESULTS: We identified an AD-linked APOE transcript (jxn1.2.2) observed in the dorsolateral prefrontal cortex (DLPFC). The APOE jxn1.2.2 transcript is associated with brain neuropathological features in DLPFC. We prioritized an independent functional SNP, rs157580, significantly associated with jxn1.2.2 transcript abundance and DNA methylation levels. rs157580 is located within active chromatin regions and predicted to affect brain-related transcriptional factors binding affinity. rs157580 shared the effects on the jxn1.2.2 transcript between European and African ethnic groups. DISCUSSION: The novel APOE functional elements provide potential therapeutic targets with mechanistic insight into the disease's etiology.

13.
medRxiv ; 2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-37986747

RESUMEN

Molecular mechanisms of neuropsychiatric disorders are challenging to study in human brain. For decades, the preferred model has been to study postmortem human brain samples despite the limitations they entail. A recent study generated RNA sequencing data from biopsies of prefrontal cortex from living patients with Parkinson's Disease and compared gene expression to postmortem tissue samples, from which they found vast differences between the two. This led the authors to question the utility of postmortem human brain studies. Through re-analysis of the same data, we unexpectedly found that the living brain tissue samples were of much lower quality than the postmortem samples across multiple standard metrics. We also performed simulations that illustrate the effects of ignoring RNA degradation in differential gene expression analyses, showing the effects can be substantial and of similar magnitude to what the authors find. For these reasons, we believe the authors' conclusions are unjustified. To the contrary, while opportunities to study gene expression in the living brain are welcome, evidence that this eclipses the value of postmortem analyses is not apparent.

14.
Am J Psychiatry ; : appiajp20220723, 2023 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-37915216

RESUMEN

OBJECTIVE: Schizophrenia is a brain disorder that originates during neurodevelopment and has complex genetic and environmental etiologies. Despite decades of clinical evidence of altered striatal function in affected patients, studies examining its cellular and molecular mechanisms in humans are limited. To explore neurodevelopmental alterations in the striatum associated with schizophrenia, the authors established a method for the differentiation of induced pluripotent stem cells (iPSCs) into ventral forebrain organoids (VFOs). METHODS: VFOs were generated from postmortem dural fibroblast-derived iPSCs of four individuals with schizophrenia and four neurotypical control individuals for whom postmortem caudate genotypes and transcriptomic data were profiled in the BrainSeq neurogenomics consortium. Individuals were selected such that the two groups had nonoverlapping schizophrenia polygenic risk scores (PRSs). RESULTS: Single-cell RNA sequencing analyses of VFOs revealed differences in developmental trajectory between schizophrenia and control individuals in which inhibitory neuronal cells from the patients exhibited accelerated maturation. Furthermore, upregulated genes in inhibitory neurons in schizophrenia VFOs showed a significant overlap with upregulated genes in postmortem caudate tissue of individuals with schizophrenia compared with control individuals, including the donors of the iPSC cohort. CONCLUSIONS: The findings suggest that striatal neurons derived from high-PRS individuals with schizophrenia carry abnormalities that originated during early brain development and that the VFO model can recapitulate disease-relevant cell type-specific neurodevelopmental phenotypes in a dish.

15.
medRxiv ; 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37790540

RESUMEN

Smoking is a leading cause of preventable morbidity and mortality. Smoking is heritable, and genome-wide association studies (GWAS) of smoking behaviors have identified hundreds of significant loci. Most GWAS-identified variants are noncoding with unknown neurobiological effects. We used genome-wide genotype, DNA methylation, and RNA sequencing data in postmortem human nucleus accumbens (NAc) to identify cis-methylation/expression quantitative trait loci (meQTLs/eQTLs), investigate variant-by-cigarette smoking interactions across the genome, and overlay QTL evidence at smoking GWAS-identified loci to evaluate their regulatory potential. Active smokers (N=52) and nonsmokers (N=171) were defined based on cotinine biomarker levels and next-of-kin reporting. We simultaneously tested variant and variant-by-smoking interaction effects on methylation and expression, separately, adjusting for biological and technical covariates and using a two-stage multiple testing approach with eigenMT and Bonferroni corrections. We found >2 million significant meQTL variants (padj<0.05) corresponding to 41,695 unique CpGs. Results were largely driven by main effects; five meQTLs, mapping to NUDT12, FAM53B, RNF39, and ADRA1B, showed a significant interaction with smoking. We found 57,683 significant eQTLs for 958 unique eGenes (padj<0.05) and no smoking interactions. Colocalization analyses identified loci with smoking-associated GWAS variants that overlapped meQTLs/eQTLs, suggesting that these heritable factors may influence smoking behaviors through functional effects on methylation/expression. One locus containing MUSTIN1 and ITIH4 colocalized across all data types (GWAS + meQTL + eQTL). In this first genome-wide meQTL map in the human NAc, the enriched overlap with smoking GWAS-identified genetic loci provides evidence that gene regulation in the brain helps explain the neurobiology of smoking behaviors.

16.
bioRxiv ; 2023 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-37786720

RESUMEN

Schizophrenia (SCZ) is characterized by a polygenic risk architecture implicating diverse molecular pathways important for synaptic function. However, how polygenic risk funnels through these pathways to translate into syndromic illness is unanswered. To evaluate biologically meaningful pathways of risk, we used tensor decomposition to characterize gene co-expression in post-mortem brain (of neurotypicals: N=154; patients with SCZ: N=84; and GTEX samples N=120) from caudate nucleus (CN), hippocampus (HP), and dorsolateral prefrontal cortex (DLPFC). We identified a CN-predominant gene set showing dopaminergic selectivity that was enriched for genes associated with clinical state and for genes associated with SCZ risk. Parsing polygenic risk score for SCZ based on this specific gene set (parsed-PRS), we found that greater pathway-specific SCZ risk predicted greater in vivo striatal dopamine synthesis capacity measured by [ 18 F]-FDOPA PET in three independent cohorts of neurotypicals and patients (total N=235) and greater fMRI striatal activation during reward anticipation in two additional independent neurotypical cohorts (total N=141). These results reveal a 'bench to bedside' translation of dopamine-linked genetic risk variation in driving in vivo striatal neurochemical and hemodynamic phenotypes that have long been implicated in the pathophysiology of SCZ.

17.
PLoS Genet ; 19(10): e1010989, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37831723

RESUMEN

The effect of schizophrenia (SCZ) genetic risk on gene expression in brain remains elusive. A popular approach to this problem has been the application of gene co-expression network algorithms (e.g., WGCNA). To improve reliability with this method it is critical to remove unwanted sources of variance while also preserving biological signals of interest. In this WCGNA study of RNA-Seq data from postmortem prefrontal cortex (78 neurotypical donors, EUR ancestry), we tested the effects of SCZ genetic risk on co-expression networks. Specifically, we implemented a novel design in which gene expression was adjusted by linear regression models to preserve or remove variance explained by biological signal of interest (GWAS genomic scores for SCZ risk-(GS-SCZ), and genomic scores- GS of height (GS-Ht) as a negative control), while removing variance explained by covariates of non-interest. We calculated co-expression networks from adjusted expression (GS-SCZ and GS-Ht preserved or removed), and consensus between them (representative of a "background" network free of genomic scores effects). We then tested the overlap between GS-SCZ preserved modules and background networks reasoning that modules with reduced overlap would be most affected by GS-SCZ biology. Additionally, we tested these modules for convergence of SCZ risk (i.e., enrichment in PGC3 SCZ GWAS priority genes, enrichment in SCZ risk heritability and relevant biological ontologies. Our results highlight key aspects of GS-SCZ effects on brain co-expression networks, specifically: 1) preserving/removing SCZ genetic risk alters the co-expression modules; 2) biological pathways enriched in modules affected by GS-SCZ implicate processes of transcription, translation and metabolism that converge to influence synaptic transmission; 3) priority PGC3 SCZ GWAS genes and SCZ risk heritability are enriched in modules associated with GS-SCZ effects. Overall, our results indicate that gene co-expression networks that selectively integrate information about genetic risk can reveal novel combinations of biological pathways involved in schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Esquizofrenia/genética , Reproducibilidad de los Resultados , Predisposición Genética a la Enfermedad , Encéfalo/metabolismo , Genómica , Estudio de Asociación del Genoma Completo
18.
Am J Psychiatry ; 180(7): 465-466, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37392042
19.
Front Neurol ; 14: 1143882, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37404944

RESUMEN

Introduction: We examined postmortem brain tissue from men, over the age of 50, for chronic traumatic encephalopathy neuropathologic change (CTE-NC). We hypothesized that (i) a small percentage would have CTE-NC, (ii) those who played American football during their youth would be more likely to have CTE-NC than those who did not play contact or collision sports, and (iii) there would be no association between CTE-NC and suicide as a manner of death. Methods: Brain tissue from 186 men and accompanying clinical information were obtained from the Lieber Institute for Brain Development. Manner of death was determined by a board-certified forensic pathologist. Information was obtained from next of kin telephone interviews, including medical, social, demographic, family, and psychiatric history. The 2016 and 2021 consensus definitions were used for CTE-NC. Two authors screened all cases, using liberal criteria for identifying "possible" CTE-NC, and five authors examined the 15 selected cases. Results: The median age at the time of death was 65 years (interquartile range = 57-75; range = 50-96). There were 25.8% with a history of playing American football and 36.0% who had suicide as their manner of death. No case was rated as definitively having "features" of CTE-NC by all five authors. Ten cases were rated as having features of CTE-NC by three or more authors (5.4% of the sample), including 8.3% of those with a personal history of playing American football and 3.9% of those who did not play contact or collision sports. Of those with mood disorders during life, 5.5% had features of CTE-NC compared to 6.0% of those who did not have a reported mood disorder. Of those with suicide as a manner of death, 6.0% had features of CTE-NC compared to 5.0% of those who did not have suicide as a manner of death. Discussion: We did not identify a single definitive case of CTE-NC, from the perspective of all raters, and only 5.4% of cases were identified as having possible features of CTE-NC by some raters. CTE-NC was very uncommon in men who played amateur American football, those with mood disorders during life, and those with suicide as a manner of death.

20.
J Biol Chem ; 299(6): 104811, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37172721

RESUMEN

Proteasomes are large macromolecular complexes with multiple distinct catalytic activities that are each vital to human brain health and disease. Despite their importance, standardized approaches to investigate proteasomes have not been universally adapted. Here, we describe pitfalls and define straightforward orthogonal biochemical approaches essential to measure and understand changes in proteasome composition and activity in the mammalian central nervous system. Through our experimentation in the mammalian brain, we determined an abundance of catalytically active proteasomes exist with and without a 19S cap(s), the regulatory particle essential for ubiquitin-dependent degradation. Moreover, we learned that in-cell measurements using activity-based probes (ABPs) are more sensitive in determining the available activity of the 20S proteasome without the 19S cap and in measuring individual catalytic subunit activities of each ß subunit within all neuronal proteasomes. Subsequently, applying these tools to human brain samples, we were surprised to find that post-mortem tissue retained little to no 19S-capped proteasome, regardless of age, sex, or disease state. In comparing brain tissues (parahippocampal gyrus) from patients with Alzheimer's disease (AD) and unaffected individuals, the available 20S proteasome activity was significantly elevated in severe cases of AD, an observation not previously noted. Taken together, our study establishes standardized approaches for the comprehensive investigation of proteasomes in mammalian brain tissue, and we reveal new insight into brain proteasome biology.


Asunto(s)
Encéfalo , Complejo de la Endopetidasa Proteasomal , Animales , Humanos , Encéfalo/metabolismo , Citoplasma/metabolismo , Mamíferos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteolisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA