Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
2.
J Med Chem ; 66(17): 12249-12265, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37603705

RESUMEN

Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.


Asunto(s)
Adenosina , Neoplasias , Humanos , Adenosina/farmacología , Antagonistas de Receptores Androgénicos , Inmunoterapia , Antagonistas de Receptores Purinérgicos P1 , Relación Estructura-Actividad , Tionucleósidos/química , Tionucleósidos/farmacología
3.
J Med Chem ; 66(7): 4961-4978, 2023 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-36967575

RESUMEN

Peroxisome proliferator-activated receptors (PPARs) are associated with the regulation of metabolic homeostasis. Based on a previous report that 1'-homologated 4'-thionucleoside acts as a dual PPARγ/δ modulator, carbocyclic nucleosides 2-5 with various sugar conformations were synthesized to determine whether sugar puckering affects binding to PPARs. (S)-conformer 2 was synthesized using Charette asymmetric cyclopropanation, whereas (N)-conformer 3 was synthesized using stereoselective Simmons-Smith cyclopropanation. All synthesized nucleosides did not exhibit binding affinity to PPARα but exhibited significant binding affinities to PPARγ/δ. The binding affinity of final nucleosides to PPARγ did not differ significantly based on their conformation, but their affinity to PPARδ depended greatly on their conformation, correlated with adiponectin production. (N)-conformer 3h was discovered to be the most potent PPARδ antagonist with good adiponectin production, which exhibited the most effective activity in inhibiting the mRNA levels of LPS-induced IL-1ß expression in RAW 264.7 macrophages, implicating its anti-inflammatory activity.


Asunto(s)
PPAR delta , PPAR gamma , PPAR gamma/metabolismo , PPAR delta/metabolismo , Adiponectina , PPAR alfa/metabolismo , Relación Estructura-Actividad , Ligandos
4.
Org Lett ; 24(50): 9281-9284, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36512445

RESUMEN

The conformation of the central five-membered ring of a nucleoside plays an important role in enzyme recognition. Bicyclo[3.1.0]hexane, also known as the methanocarba (MC), serves as a template that can mimic the locked forms of the two distinctive conformations, namely, the north and south conformations. While modified nucleosides locked in the north conformation have been actively investigated, the south counterpart remains largely unexplored because it is difficult to synthesize. Herein, we report a concise synthetic route that can provide the key amino sugar intermediate essential for the synthesis of (S)-MC ribonucleosides in a 100% stereoselective manner. Also, through the proposed synthetic approach, we report the first synthesis of enantiomerically pure (S)-MC cytidine 1. We believe our findings would greatly contribute to the field of nucleoside chemistry and provide opportunities for novel nucleoside discovery.


Asunto(s)
Ribonucleósidos , Nucleósidos/química , Conformación Molecular , Pirimidinas
5.
J Med Chem ; 65(17): 11648-11657, 2022 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-35977382

RESUMEN

Modulators of the G protein-coupled A2A adenosine receptor (A2AAR) have been considered promising agents to treat Parkinson's disease, inflammation, cancer, and central nervous system disorders. Herein, we demonstrate that a thiophene modification at the C8 position in the common adenine scaffold converted an A2AAR agonist into an antagonist. We synthesized and characterized a novel A2AAR antagonist, 2 (LJ-4517), with Ki = 18.3 nM. X-ray crystallographic structures of 2 in complex with two thermostabilized A2AAR constructs were solved at 2.05 and 2.80 Å resolutions. In contrast to A2AAR agonists, which simultaneously interact with both Ser2777.42 and His2787.43, 2 only transiently contacts His2787.43, which can be direct or water-mediated. The n-hexynyl group of 2 extends into an A2AAR exosite. Structural analysis revealed that the introduced thiophene modification restricted receptor conformational rearrangements required for subsequent activation. This approach can expand the repertoire of adenosine receptor antagonists that can be designed based on available agonist scaffolds.


Asunto(s)
Nucleósidos , Receptor de Adenosina A2A , Antagonistas del Receptor de Adenosina A2/química , Antagonistas del Receptor de Adenosina A2/farmacología , Cristalografía por Rayos X , Conformación Molecular , Receptor de Adenosina A2A/química , Tiofenos
6.
ACS Med Chem Lett ; 13(7): 1131-1136, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35859875

RESUMEN

On the basis of the previously reported polypharmacological profile of truncated d-1'-homologated adenosine derivatives [J. Med. Chem.2020, 63, 16012], the l-nucleoside analogues were synthesized using computer-aided design and evaluated for biological activity. The target molecules were synthesized from d-ribose via the key intramolecular cyclization of the monotosylate and Mitsunobu condensation. The peroxisome proliferator-activated receptor (PPAR) binding activities of l-nucleoside analogue 2d (K i = 4.3 µM for PPARγ and 1.0 µM for PPARδ) were significantly improved in comparison with those of the d-nucleoside compound 1 (11.9 and 2.7 µM, respectively). In addition, the l-nucleosides showed more potent adiponectin-secretion-promoting activity than the d-nucleoside analogues.

7.
J Org Chem ; 86(14): 9828-9837, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34184528

RESUMEN

To determine which sugar conformation is favorable in binding to peroxisome proliferator-activated receptors, the conformationally locked south (S) and north (N) analogues were asymmetrically synthesized using a bicyclo[3.1.0]hexane template. The (S)-conformer was synthesized by employing "reagent-controlled" Charette asymmetric cyclopropanation in a 100% stereoselective manner, whereas the (N)-conformer was stereoselectively synthesized by using "substrate-controlled" hydroxyl-directed Simmons-Smith cyclopropanation as a key step.


Asunto(s)
Compuestos Bicíclicos con Puentes , Nucleósidos
8.
J Med Chem ; 63(24): 16012-16027, 2020 12 24.
Artículo en Inglés | MEDLINE | ID: mdl-33325691

RESUMEN

Following our report that A3 adenosine receptor (AR) antagonist 1 exhibited a polypharmacological profile as a dual modulator of peroxisome proliferator-activated receptor (PPAR)γ/δ, we discovered a new template, 1'-homologated adenosine analogues 4a-4t, as dual PPARγ/δ modulators without AR binding. Removal of binding affinity to A3AR was achieved by 1'-homologation, and PPARγ/δ dual modulation was derived from the structural similarity between the target nucleosides and PPAR modulator drug, rosiglitazone. All the final nucleosides were devoid of AR-binding affinity and exhibited high binding affinities to PPARγ/δ but lacked PPARα binding. 2-Cl derivatives exhibited dual receptor-binding affinity to PPARγ/δ, which was absent for the corresponding 2-H derivatives. 2-Propynyl substitution prevented PPARδ-binding affinity but preserved PPARγ affinity, indicating that the C2 position defines a pharmacophore for selective PPARγ ligand designs. PPARγ/δ dual modulators functioning as both PPARγ partial agonists and PPARδ antagonists promoted adiponectin production, suggesting their therapeutic potential against hypoadiponectinemia-associated cancer and metabolic diseases.


Asunto(s)
Adenosina/química , Adenosina/farmacología , Adiponectina/metabolismo , Descubrimiento de Drogas , Obesidad/tratamiento farmacológico , PPAR alfa/antagonistas & inhibidores , PPAR gamma/agonistas , Animales , Sitios de Unión , Humanos , Ligandos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Simulación de Dinámica Molecular , Obesidad/metabolismo , Obesidad/patología , PPAR alfa/metabolismo , PPAR gamma/metabolismo , Unión Proteica , Relación Estructura-Actividad
9.
Eur J Med Chem ; 187: 111956, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31841728

RESUMEN

We have reported on aristeromycin (1) and 6'-fluorinated-aristeromycin analogues (2), which are active against RNA viruses such as Middle East respiratory syndrome coronavirus (MERS-CoV), severe acute respiratory syndrome coronavirus (SARS-CoV), Zika virus (ZIKV), and Chikungunya virus (CHIKV). However, these exhibit substantial cytotoxicity. As this cytotoxicity may be attributed to 5'-phosphorylation, we designed and synthesized one-carbon homologated 6'-fluorinated-aristeromycin analogues. This modification prevents 5'-phosphorlyation by cellular kinases, whereas the inhibitory activity towards S-adenosyl-l-homocysteine (SAH) hydrolase will be retained. The enantiomerically pure 6'-fluorinated-5'-homoaristeromycin analogues 3a-e were synthesized via the electrophilic fluorination of the silyl enol ether with Selectfluor, using a base-build up approach as the key steps. All synthesized compounds exhibited potent inhibitory activity towards SAH hydrolase, among which 6'-ß-fluoroadenosine analogue 3a was the most potent (IC50 = 0.36 µM). Among the compounds tested, 6'-ß-fluoro-homoaristeromycin 3a showed potent antiviral activity (EC50 = 0.12 µM) against the CHIKV, without noticeable cytotoxicity up to 250 µM. Only 3a displayed anti-CHIKV activity, whereas both3a and 3b inhibited SAH hydrolase with similar IC50 values (0.36 and 0.37 µM, respectively), which suggested that 3a's antiviral activity did not merely depend on the inhibition of SAH hydrolase. This is further supported by the fact that the antiviral effect was specific for CHIKV and some other alphaviruses and none of the homologated analogues inhibited other RNA viruses, such as SARS-CoV, MERS-CoV, and ZIKV. The potent inhibition and high selectivity index make 6'-ß-fluoro-homoaristeromycin (3a) a promising new template for the development of antivirals against CHIKV, a serious re-emerging pathogen that has infected millions of people over the past 15 years.


Asunto(s)
Adenosina/análogos & derivados , Antivirales/farmacología , Virus Chikungunya/efectos de los fármacos , Adenosina/síntesis química , Adenosina/química , Adenosina/farmacología , Antivirales/síntesis química , Antivirales/química , Cristalografía por Rayos X , Relación Dosis-Respuesta a Droga , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Estructura Molecular , Relación Estructura-Actividad , Replicación Viral/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...