Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Enzyme Microb Technol ; 120: 124-135, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30396393

RESUMEN

The feruloyl esterases Fae125, Fae7262 and Fae68 from Talaromyces wortmannii were screened in 10 different solvent: buffer systems in terms of residual hydrolytic activity and of the ability for the transesterification of vinyl ferulate with prenol or l-arabinose. Among the tested enzymes, the acetyl xylan-related Fae125 belonging to the phylogenetic subfamily 5 showed highest yield and selectivity for both products in alkane: buffer systems (n-hexane or n-octane). Response surface methodology, based on a 5-level and 6-factor central composite design, revealed that the substrate molar ratio and the water content were the most significant variables for the bioconversion yield and selectivity. The effect of agitation, the possibility of DMSO addition and the increase of donor concentration were investigated. After optimization, competitive transesterification yields were obtained for prenyl ferulate (87.5-92.6%) and l-arabinose ferulate (56.2-61.7%) at reduced reaction times (≤24 h) resulting in good productivities (>1 g/L/h, >300 kg product/kg FAE). The enzyme could be recycled for six consecutive cycles retaining 66.6% of the synthetic activity and 100% of the selectivity.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/química , Ácidos Cumáricos/metabolismo , Solventes/química , Talaromyces/enzimología , Arabinosa/química , Esterificación , Hemiterpenos , Pentanoles/química , Especificidad por Sustrato , Compuestos de Vinilo/química
2.
Comput Struct Biotechnol J ; 16: 361-369, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30364734

RESUMEN

Three novel feruloyl esterases (Fae125, Fae7262 and Fae68) from Talaromyces wortmannii overexpressed in the C1 platform were evaluated for the transesterification of vinyl ferulate with two acceptors of different size and lipophilicity (prenol and L-arabinose) in detergentless microemulsions. The effect of reaction conditions such as the microemulsion composition, the substrate concentration, the enzyme load, the pH, the temperature and the agitation were investigated. The type A Fae125 belonging to the subfamily 5 (SF5) of phylogenetic classification showed highest yields for the synthesis of both products after optimization of reaction conditions: 81.8% for prenyl ferulate and 33.0% for L-arabinose ferulate. After optimization, an 8-fold increase in the yield and a 12-fold increase in selectivity were achieved for the synthesis of prenyl ferulate.

3.
Molecules ; 23(9)2018 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-30235900

RESUMEN

Feruloyl esterases (FAEs, E.C. 3.1.1.73) are biotechnologically important enzymes with several applications in ferulic acid production from biomass, but also in synthesis of hydroxycinnamic acid derivatives. The use of such biocatalysts in commercial processes can become feasible by their immobilization, providing the advantages of isolation and recycling. In this work, eight feruloyl esterases, immobilized in cross-linked enzyme aggregates (CLEAs) were tested in regard to their transesterification performance, towards the production of prenyl ferulate (PFA) and arabinose ferulate (AFA). After solvent screening, comparison with the activity of respective soluble enzymes, and operational stability tests, FAE125 was selected as the most promising biocatalyst. A central composite design revealed the optimum conditions for each transesterification product, in terms of water content, time, and substrate ratio for both products, and temperature and enzyme load additionally for prenyl ferulate. The optimum product yields obtained were 83.7% for PFA and 58.1% for AFA. FAE125 CLEAs are stable in the optimum conditions of transesterification reactions, maintaining 70% residual activity after five consecutive reactions. Overall, FAE125 CLEAs seem to be able to perform as a robust biocatalyst, offering satisfactory yields and stability, and thus showing significant potential for industrial applications.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Ácidos Cumáricos/metabolismo , Sordariales/enzimología , Talaromyces/enzimología , Hidrolasas de Éster Carboxílico/aislamiento & purificación , Ácidos Cumáricos/química , Sordariales/metabolismo , Talaromyces/metabolismo
4.
Bioresour Technol ; 239: 57-65, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28501686

RESUMEN

The immobilisation of four feruloyl esterases (FAEs) (FaeA1, FaeA2, FaeB1, FaeB2) from the thermophilic fungus Myceliophthora thermophila C1 was studied and optimised via physical adsorption onto various mesoporous silica particles with pore diameters varying from 6.6nm to 10.9nm. Using crude enzyme preparations, enrichment of immobilised FAEs was observed, depending on pore diameter and protein size. The immobilised enzymes were successfully used for the synthesis of butyl ferulate through transesterification of methyl ferulate with 1-butanol. Although the highest butyl ferulate yields were obtained with free enzyme, the synthesis-to-hydrolysis ratio was higher when using immobilised enzymes. Over 90% of the initial activity was observed in a reusability experiment after nine reaction cycles, each lasting 24h. Rinsing with solvent to remove water from the immobilised enzymes further improved their activity. This study demonstrates the suitability of immobilised crude enzyme preparations in the development of biocatalysts for esterification reactions.


Asunto(s)
Hidrolasas de Éster Carboxílico , Sordariales , Enzimas Inmovilizadas , Dióxido de Silicio , Solventes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...