RESUMEN
Background: Most smokers attempting to quit will quickly relapse to tobacco use even when treated with the most efficacious smoking cessation agents currently available. This highlights the need to develop effective new smoking cessation medications. Evidence suggests that positive allosteric modulators (PAM) and other enhancers of nicotinic acetylcholine receptor (nAChR) signaling could have therapeutic utility as smoking cessation agents. Methods: 3-[3-(3-pyridyl)-1,2,4-oxadiazol-5-yl]benzonitrile (NS9283) was used as a starting point for medical chemistry efforts to develop novel small molecule enhancers of α4ß2* nAChR stoichiometries containing a low-affinity agonist binding site at the interface of α4/α4 and α4/α5 subunits. Results: The NS9283 derivative SR9883 enhanced the effect of nicotine on α4ß2* nAChR stoichiometries containing low-affinity agonist binding sites, with EC50 values from 0.2-0.4 µM. SR9883 had no effect on α3ß2* or α3ß4* nAChRs. SR9883 was bioavailable after intravenous (1 mg kg-1) and oral (10-20 mg kg-1) administration and penetrated into the brain. When administered alone, SR9883 (5-10 mg kg-1) had no effect on locomotor activity or intracranial self-stimulation (ICSS) thresholds in mice. When co-administered with nicotine, SR9883 enhanced locomotor suppression and elevations of ICSS thresholds induced by nicotine. SR9883 (5 and 10 mg kg-1) decreased responding for intravenous nicotine infusions (0.03 mg kg-1 per infusion) but had no effect on responding for food rewards in rats. Conclusions: These data suggest that SR9883 is useful for investigating behavioral processes regulated by certain α4ß2* nAChR stoichiometries. SR9883 and related compounds with favorable drug-like physiochemical and pharmacological properties hold promise as novel treatments of tobacco use disorder.
RESUMEN
Determining the localization of intracerebral implants in rodent brain stands as a critical final step in most physiological and behaviroral studies, especially when targeting deep brain nuclei. Conventional histological approaches, reliant on manual estimation through sectioning and slice examination, are error-prone, potentially complicating data interpretation. Leveraging recent advances in tissue-clearing techniques and light-sheet fluorescence microscopy, we introduce a method enabling virtual brain slicing in any orientation, offering precise implant localization without the limitations of traditional tissue sectioning. To illustrate the method's utility, we present findings from the implantation of linear silicon probes into the midbrain interpeduncular nucleus (IPN) of anesthetized transgenic mice expressing chanelrhodopsin-2 and enhanced yellow fluorescent protein under the choline acetyltransferase (ChAT) promoter/enhancer regions (ChAT-Chr2-EYFP mice). Utilizing a fluorescent dye applied to the electrode surface, we visualized both the targeted area and the precise localization, enabling enhanced inter-subject comparisons. Three dimensional (3D) brain renderings, presented effortlessly in video format across various orientations, showcase the versatility of this approach.
RESUMEN
Over the last decade, the understanding of the habenula has rapidly advanced from being an understudied brain area with the Latin name 'habena" meaning "little rein", to being considered a "major rein" in the control of key monoaminergic brain centers. This ancient brain structure is a strategic node in the information flow from fronto-limbic brain areas to brainstem nuclei. As such, it plays a crucial role in regulating emotional, motivational, and cognitive behaviors and has been implicated in several neuropsychiatric disorders, including depression and addiction. This review will summarize recent findings on the medial (MHb) and lateral (LHb) habenula, their topographical projections, cell types, and functions. Additionally, we will discuss contemporary efforts that have uncovered novel molecular pathways and synaptic mechanisms with a focus on MHb-Interpeduncular nucleus (IPN) synapses. Finally, we will explore the potential interplay between the habenula's cholinergic and non-cholinergic components in coordinating related emotional and motivational behaviors, raising the possibility that these two pathways work together to provide balanced roles in reward prediction and aversion, rather than functioning independently.
Asunto(s)
Habénula , Núcleo Interpeduncular , Motivación , Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , EmocionesRESUMEN
Neuromodulatory substances can be released from distal afferents for communication between brain structures or produced locally to modulate neighboring circuit elements. Corticotropin-releasing hormone (CRH) from long-range neurons in the hypothalamus projecting to the medial prefrontal cortex (mPFC) has been shown to induce anxiety-like behaviors. However, the role of CRH produced in the mPFC has not been investigated. Here we demonstrate that a specific class of mPFC interneurons that express CRH (CrhINs) releases CRH upon high-frequency stimulation to enhance excitability of layer 2/3 pyramidal cells (L2/3 PCs) expressing the CRH receptors. When stimulated at low frequency, CrhINs release GABA resulting in the inhibition of oxytocin receptor-expressing interneurons (OxtrINs) and L2/3 PCs. Conditional deletion of CRH in mPFC CrhINs and chemogenetic activation of CrhINs have opposite effects on novelty exploration in male but not in female mice, and do not affect anxiety-related behaviors in either males or females. Our data reveal that CRH produced by local interneurons in the mPFC is required for sex-specific novelty exploration and suggest that our understanding of complex behaviors may require knowledge of local and remote neuromodulatory action.
Asunto(s)
Hormona Liberadora de Corticotropina , Corteza Prefrontal , Femenino , Masculino , Animales , Ratones , Hormona Liberadora de Corticotropina/genética , Receptores de Hormona Liberadora de Corticotropina , Células Piramidales , InterneuronasRESUMEN
Hedgehog-interacting protein (HHIP) sequesters Hedgehog ligands to repress Smoothened (SMO)-mediated recruitment of the GLI family of transcription factors. Allelic variation in HHIP confers risk of chronic obstructive pulmonary disease and other smoking-related lung diseases, but underlying mechanisms are unclear. Using single-cell and cell-type-specific translational profiling, we show that HHIP expression is highly enriched in medial habenula (MHb) neurons, particularly MHb cholinergic neurons that regulate aversive behavioral responses to nicotine. HHIP deficiency dysregulated the expression of genes involved in cholinergic signaling in the MHb and disrupted the function of nicotinic acetylcholine receptors (nAChRs) through a PTCH-1/cholesterol-dependent mechanism. Further, CRISPR/Cas9-mediated genomic cleavage of the Hhip gene in MHb neurons enhanced the motivational properties of nicotine in mice. These findings suggest that HHIP influences vulnerability to smoking-related lung diseases in part by regulating the actions of nicotine on habenular aversion circuits.
Asunto(s)
Habénula , Enfermedades Pulmonares , Receptores Nicotínicos , Ratones , Animales , Nicotina/farmacología , Nicotina/metabolismo , Habénula/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Receptores Nicotínicos/metabolismo , Neuronas Colinérgicas/metabolismo , Enfermedades Pulmonares/metabolismoRESUMEN
Nicotine addiction, through smoking, is the principal cause of preventable mortality worldwide. Human genome-wide association studies have linked polymorphisms in the CHRNA5-CHRNA3-CHRNB4 gene cluster, coding for the α5, α3, and ß4 nicotinic acetylcholine receptor (nAChR) subunits, to nicotine addiction. ß4*nAChRs have been implicated in nicotine withdrawal, aversion, and reinforcement. Here we show that ß4*nAChRs also are involved in non-nicotine-mediated responses that may predispose to addiction-related behaviors. ß4 knock-out (KO) male mice show increased novelty-induced locomotor activity, lower baseline anxiety, and motivational deficits in operant conditioning for palatable food rewards and in reward-based Go/No-go tasks. To further explore reward deficits we used intracranial self-administration (ICSA) by directly injecting nicotine into the ventral tegmental area (VTA) in mice. We found that, at low nicotine doses, ß4KO self-administer less than wild-type (WT) mice. Conversely, at high nicotine doses, this was reversed and ß4KO self-administered more than WT mice, whereas ß4-overexpressing mice avoided nicotine injections. Viral expression of ß4 subunits in medial habenula (MHb), interpeduncular nucleus (IPN), and VTA of ß4KO mice revealed dose- and region-dependent differences: ß4*nAChRs in the VTA potentiated nicotine-mediated rewarding effects at all doses, whereas ß4*nAChRs in the MHb-IPN pathway, limited VTA-ICSA at high nicotine doses. Together, our findings indicate that the lack of functional ß4*nAChRs result in deficits in reward sensitivity including increased ICSA at high doses of nicotine that is restored by re-expression of ß4*nAChRs in the MHb-IPN. These data indicate that ß4 is a critical modulator of reward-related behaviors.SIGNIFICANCE STATEMENT Human genetic studies have provided strong evidence for a relationship between variants in the CHRNA5-CHRNA3-CHRNB4 gene cluster and nicotine addiction. Yet, little is known about the role of ß4 nicotinic acetylcholine receptor (nAChR) subunit encoded by this cluster. We investigated the implication of ß4*nAChRs in anxiety-, food reward- and nicotine reward-related behaviors. Deletion of the ß4 subunit gene resulted in an addiction-related phenotype characterized by low anxiety, high novelty-induced response, lack of sensitivity to palatable food rewards and increased intracranial nicotine self-administration at high doses. Lentiviral vector-induced re-expression of the ß4 subunit into either the MHb or IPN restored a "stop" signal on nicotine self-administration. These results suggest that ß4*nAChRs provide a promising novel drug target for smoking cessation.
Asunto(s)
Condicionamiento Operante/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Proteínas del Tejido Nervioso/metabolismo , Nicotina/administración & dosificación , Receptores Nicotínicos/metabolismo , Recompensa , Autocontrol , Área Tegmental Ventral/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Aprendizaje Discriminativo/efectos de los fármacos , Masculino , Ratones , Ratones Noqueados , Motivación/efectos de los fármacos , Proteínas del Tejido Nervioso/genética , Agonistas Nicotínicos/administración & dosificación , Receptores Nicotínicos/genética , AutoadministraciónRESUMEN
The habenula, an ancient small brain area in the epithalamus, densely expresses nicotinic acetylcholine receptors and is critical for nicotine intake and aversion. As such, identification of strategies to manipulate habenular activity may yield approaches to treat nicotine addiction. Here we show that GPR151, an orphan G-protein-coupled receptor (GPCR) highly enriched in the habenula of humans and rodents, is expressed at presynaptic membranes and synaptic vesicles and associates with synaptic components controlling vesicle release and ion transport. Deletion of Gpr151 inhibits evoked neurotransmission but enhances spontaneous miniature synaptic currents and eliminates short-term plasticity induced by nicotine. We find that GPR151 couples to the G-alpha inhibitory protein Gαo1 to reduce cyclic adenosine monophosphate (cAMP) levels in mice and in GPR151-expressing cell lines that are amenable to ligand screens. Gpr151- knockout (KO) mice show diminished behavioral responses to nicotine and self-administer greater quantities of the drug, phenotypes rescued by viral reexpression of Gpr151 in the habenula. These data identify GPR151 as a critical modulator of habenular function that controls nicotine addiction vulnerability.
Asunto(s)
Habénula/fisiología , Plasticidad Neuronal/fisiología , Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Trastornos Relacionados con Sustancias/metabolismo , Animales , Células CHO , Cricetulus , Subunidades alfa de la Proteína de Unión al GTP Gi-Go/metabolismo , Habénula/metabolismo , Humanos , Ratones Noqueados , Plasticidad Neuronal/efectos de los fármacos , Plasticidad Neuronal/genética , Nicotina/administración & dosificación , Agonistas Nicotínicos/administración & dosificación , Receptores Acoplados a Proteínas G/genética , Transmisión Sináptica/genética , Transmisión Sináptica/fisiologíaRESUMEN
Diabetes is far more prevalent in smokers than non-smokers, but the underlying mechanisms of vulnerability are unknown. Here we show that the diabetes-associated gene Tcf7l2 is densely expressed in the medial habenula (mHb) region of the rodent brain, where it regulates the function of nicotinic acetylcholine receptors. Inhibition of TCF7L2 signalling in the mHb increases nicotine intake in mice and rats. Nicotine increases levels of blood glucose by TCF7L2-dependent stimulation of the mHb. Virus-tracing experiments identify a polysynaptic connection from the mHb to the pancreas, and wild-type rats with a history of nicotine consumption show increased circulating levels of glucagon and insulin, and diabetes-like dysregulation of blood glucose homeostasis. By contrast, mutant Tcf7l2 rats are resistant to these actions of nicotine. Our findings suggest that TCF7L2 regulates the stimulatory actions of nicotine on a habenula-pancreas axis that links the addictive properties of nicotine to its diabetes-promoting actions.
Asunto(s)
Trastornos del Metabolismo de la Glucosa/genética , Habénula/metabolismo , Transducción de Señal , Tabaquismo/complicaciones , Proteína 2 Similar al Factor de Transcripción 7/metabolismo , Animales , AMP Cíclico/metabolismo , Glucosa/metabolismo , Trastornos del Metabolismo de la Glucosa/metabolismo , Humanos , Ratones , Mutagénesis , Nicotina/metabolismo , Células PC12 , Páncreas/metabolismo , Ratas , Receptores Nicotínicos/metabolismo , Tabaquismo/genética , Tabaquismo/metabolismo , Proteína 2 Similar al Factor de Transcripción 7/genéticaRESUMEN
Behavioral flexibility and impulse control are necessary for successful execution of adaptive behavior. They are impaired in patients with damage to the prefrontal cortex (PFC) and in some clinically important conditions, such as obsessive-compulsive disorder. Although the medial prefrontal cortex (mPFC) has been investigated as a critical structure for behavioral flexibility and impulse control, the contribution of the underlying pyramidal neuron cell types in the mPFC remained to be understood. Here we show that interneuron-mediated local inactivation of pyramidal neurons in the mPFC of male and female mice induces both premature responses and choice bias, and establish that these impulsive and compulsive responses are modulated independently. Cell-type-specific photoinhibition of pyramidal deep layer corticostriatal or corticothalamic neurons reduces behavioral flexibility without inducing premature responses. Together, our data confirm the role of corticostriatal neurons in behavioral flexibility and demonstrate that flexible behaviors are also modulated by direct projections from deep layer corticothalamic neurons in the mPFC to midline thalamic nuclei.SIGNIFICANCE STATEMENT Behavioral flexibility and impulse control are indispensable for animals to adapt to changes in the environment and often affected in patients with PFC damage and obsessive-compulsive disorder. We used a probabilistic reversal task to dissect the underlying neural circuitry in the mPFC. Through characterization of the three major pyramidal cell types in the mPFC with optogenetic silencing, we demonstrated that corticostriatal and corticothalamic but not corticocortical pyramidal neurons are temporally recruited for behavioral flexibility. Together, our findings confirm the role of corticostriatal projections in cognitive flexibility and identify corticothalamic neurons as equally important for behavioral flexibility.
Asunto(s)
Conducta Animal/fisiología , Neuronas/fisiología , Corteza Prefrontal/fisiología , Algoritmos , Animales , Conducta de Elección , Conducta Compulsiva/psicología , Cuerpo Estriado/citología , Cuerpo Estriado/fisiología , Femenino , Conducta Impulsiva , Masculino , Ratones , Ratones Endogámicos C57BL , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Optogenética , Células Piramidales/fisiología , Tiempo de Reacción , Tálamo/citología , Tálamo/fisiologíaRESUMEN
Repeated exposure to drugs of abuse can produce adaptive changes that lead to the establishment of dependence. It has been shown that allelic variation in the α5 nicotinic acetylcholine receptor (nAChR) gene CHRNA5 is associated with higher risk of tobacco dependence. In the brain, α5-containing nAChRs are expressed at very high levels in the interpeduncular nucleus (IPN). Here we identified two nonoverlapping α5 + cell populations (α5- Amigo1 and α5- Epyc ) in mouse IPN that respond differentially to nicotine. Chronic nicotine treatment altered the translational profile of more than 1,000 genes in α5- Amigo1 neurons, including neuronal nitric oxide synthase (Nos1) and somatostatin (Sst). In contrast, expression of few genes was altered in the α5- Epyc population. We show that both nitric oxide and SST suppress optically evoked neurotransmitter release from the terminals of habenular (Hb) neurons in IPN. Moreover, in vivo silencing of neurotransmitter release from the α5- Amigo1 but not from the α5- Epyc population eliminates nicotine reward, measured using place preference. This loss of nicotine reward was mimicked by shRNA-mediated knockdown of Nos1 in the IPN. These findings reveal a proaddiction adaptive response to chronic nicotine in which nitric oxide and SST are released by a specific α5+ neuronal population to provide retrograde inhibition of the Hb-IPN circuit and thereby enhance the motivational properties of nicotine.
Asunto(s)
Núcleo Interpeduncular/efectos de los fármacos , Nicotina/farmacología , Óxido Nítrico Sintasa de Tipo I/genética , Receptores Nicotínicos/genética , Somatostatina/genética , Tabaquismo/genética , Animales , Femenino , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Habénula/efectos de los fármacos , Habénula/metabolismo , Habénula/patología , Núcleo Interpeduncular/metabolismo , Núcleo Interpeduncular/patología , Masculino , Ratones , Ratones Transgénicos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Neurotransmisores/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo I/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo I/metabolismo , Biosíntesis de Proteínas , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Receptores Nicotínicos/metabolismo , Recompensa , Somatostatina/metabolismo , Técnicas Estereotáxicas , Transmisión Sináptica , Tabaquismo/metabolismo , Tabaquismo/patologíaRESUMEN
The frequency of human social and emotional disorders varies significantly between males and females. We have recently reported that oxytocin receptor interneurons (OxtrINs) modulate female sociosexual behavior. Here, we show that, in male mice, OxtrINs regulate anxiety-related behaviors. We demonstrate that corticotropin-releasing-hormone-binding protein (CRHBP), an antagonist of the stress hormone CRH, is specifically expressed in OxtrINs. Production of CRHBP blocks the CRH-induced potentiation of postsynaptic layer 2/3 pyramidal cell activity of male, but not female, mice, thus producing an anxiolytic effect. Our data identify OxtrINs as critical for modulation of social and emotional behaviors in both females and males and reveal a molecular mechanism that acts on local medial prefrontal cortex (mPFC) circuits to coordinate responses to OXT and CRH. They suggest that additional studies of the impact of the OXT/OXTR and CRHBP/CRH pathways in males and females will be important in development of gender-specific therapies.
Asunto(s)
Ansiedad/psicología , Proteínas Portadoras/metabolismo , Hormona Liberadora de Corticotropina/metabolismo , Interneuronas/metabolismo , Oxitocina/metabolismo , Corteza Prefrontal/metabolismo , Receptores de Oxitocina/metabolismo , Caracteres Sexuales , Animales , Ansiedad/metabolismo , Conducta Animal , Femenino , Potenciación a Largo Plazo , Masculino , Redes y Vías Metabólicas , Ratones , Factores SexualesRESUMEN
A great deal of interest has been focused recently on the habenula and its critical role in aversion, negative-reward and drug dependence. Using a conditional mouse model of the ACh-synthesizing enzyme choline acetyltransferase (Chat), we report that local elimination of acetylcholine (ACh) in medial habenula (MHb) neurons alters glutamate corelease and presynaptic facilitation. Electron microscopy and immuno-isolation analyses revealed colocalization of ACh and glutamate vesicular transporters in synaptic vesicles (SVs) in the central IPN. Glutamate reuptake in SVs prepared from the IPN was increased by ACh, indicating vesicular synergy. Mice lacking CHAT in habenular neurons were insensitive to nicotine-conditioned reward and withdrawal. These data demonstrate that ACh controls the quantal size and release frequency of glutamate at habenular synapses, and suggest that the synergistic functions of ACh and glutamate may be generally important for modulation of cholinergic circuit function and behavior.
Asunto(s)
Acetilcolina/metabolismo , Neuronas Colinérgicas/fisiología , Ácido Glutámico/metabolismo , Habénula/fisiología , Sinapsis/efectos de los fármacos , Tabaquismo , Animales , Condicionamiento Clásico , RatonesRESUMEN
Postsynaptic remodeling of glutamatergic synapses on ventral striatum (vSTR) medium spiny neurons (MSNs) is critical for shaping stress responses. However, it is unclear which presynaptic inputs are involved. Susceptible mice exhibited increased synaptic strength at intralaminar thalamus (ILT), but not prefrontal cortex (PFC), inputs to vSTR MSNs following chronic social stress. Modulation of ILT-vSTR versus PFC-vSTR neuronal activity differentially regulated dendritic spine plasticity and social avoidance.
Asunto(s)
Espinas Dendríticas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Estrés Psicológico/fisiopatología , Tálamo/fisiología , Estriado Ventral/fisiología , Animales , Conducta Animal/fisiología , Susceptibilidad a Enfermedades , Masculino , Ratones , Ratones Endogámicos C57BL , Recompensa , Conducta Social , Estriado Ventral/citologíaRESUMEN
OBJECTIVE: A hallmark of rheumatoid arthritis (RA) is the chronic pain that accompanies inflammation and joint deformation. Patients with RA rate pain relief as the highest priority; however, few studies have addressed the efficacy and safety of therapies directed specifically toward pain pathways. The ω-conotoxin MVIIA (ziconotide) is used in humans to alleviate persistent pain syndromes, because it specifically blocks the voltage-gated calcium 2.2 (CaV 2.2) channel, which mediates the release of neurotransmitters and proinflammatory mediators from peripheral nociceptor nerve terminals. The aims of this study were to investigate whether blockade of CaV 2.2 can suppress arthritis pain, and to examine the progression of induced arthritis during persistent CaV 2.2 blockade. METHODS: Transgenic mice expressing a membrane-tethered form of MVIIA under the control of a nociceptor-specific gene (MVIIA-transgenic mice) were used in the experiments. The mice were subjected to unilateral induction of joint inflammation using a combination of antigen and collagen. RESULTS: CaV 2.2 blockade mediated by tethered MVIIA effectively suppressed arthritis-induced pain; however, in contrast to their wild-type littermates, which ultimately regained use of their injured joint as inflammation subsided, MVIIA-transgenic mice showed continued inflammation, with up-regulation of the osteoclast activator RANKL and concomitant joint and bone destruction. CONCLUSION: Taken together, our results indicate that alleviation of peripheral pain by blockade of CaV 2.2- mediated calcium influx and signaling in nociceptor sensory neurons impairs recovery from induced arthritis and point to the potentially devastating effects of using CaV 2.2 channel blockers as analgesics during inflammation.
Asunto(s)
Artritis Experimental/metabolismo , Artritis Reumatoide/metabolismo , Canales de Calcio Tipo N/metabolismo , Dolor Nociceptivo/metabolismo , Nociceptores/metabolismo , Ligando RANK/metabolismo , Rodilla de Cuadrúpedos/metabolismo , omega-Conotoxinas/genética , Animales , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/inmunología , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/inmunología , Bloqueadores de los Canales de Calcio/uso terapéutico , Canales de Calcio Tipo N/inmunología , Modelos Animales de Enfermedad , Ratones , Ratones Transgénicos , Dolor Nociceptivo/tratamiento farmacológico , Dolor Nociceptivo/inmunología , Rodilla de Cuadrúpedos/patología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo , Regulación hacia Arriba , omega-Conotoxinas/uso terapéuticoRESUMEN
The habenula is a phylogenetically conserved brain structure in the epithalamus. It is a major node in the information flow between fronto-limbic brain regions and monoaminergic brainstem nuclei, and is thus anatomically and functionally ideally positioned to regulate emotional, motivational, and cognitive behaviors. Consequently, the habenula may be critically important in the pathophysiology of psychiatric disorders such as addiction and depression. Here we investigated the expression pattern of GPR151, a G protein-coupled receptor (GPCR), whose mRNA has been identified as highly and specifically enriched in habenular neurons by in situ hybridization and translating ribosome affinity purification (TRAP). In the present immunohistochemical study we demonstrate a pronounced and highly specific expression of the GPR151 protein in the medial and lateral habenula of rodent brain. Specific expression was also seen in efferent habenular fibers projecting to the interpeduncular nucleus, the rostromedial tegmental area, the rhabdoid nucleus, the mesencephalic raphe nuclei, and the dorsal tegmental nucleus. Using confocal microscopy and quantitative colocalization analysis, we found that GPR151-expressing axons and terminals overlap with cholinergic, substance P-ergic, and glutamatergic markers. Virtually identical expression patterns were observed in rat, mouse, and zebrafish brains. Our data demonstrate that GPR151 is highly conserved, specific for a subdivision of the habenular neurocircuitry, and constitutes a promising novel target for psychiatric drug development.
Asunto(s)
Axones/fisiología , Habénula/citología , Red Nerviosa/metabolismo , Neuronas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropéptido/metabolismo , Animales , Colina O-Acetiltransferasa/metabolismo , Humanos , Núcleo Interpeduncular/fisiología , Mesencéfalo/anatomía & histología , Mesencéfalo/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas de Neurofilamentos/metabolismo , Ratas , Ratas Wistar , Receptores Acoplados a Proteínas G/genética , Receptores de Neuropéptido/genética , Especificidad de la Especie , Sustancia P/metabolismo , Triptófano Hidroxilasa/metabolismo , Tirosina 3-Monooxigenasa/metabolismo , Vertebrados/anatomía & histología , Vertebrados/metabolismo , Proteínas de Transporte Vesicular de Glutamato/metabolismo , Pez Cebra , beta-Galactosidasa/genética , beta-Galactosidasa/metabolismoRESUMEN
Progress has been made over the last decade in our understanding of the brain areas and circuits involved in nicotine reward and withdrawal, leading to models of addiction that assign different addictive behaviors to distinct, yet overlapping, neural circuits (Koob and Volkow, 2010; Lobo and Nestler, 2011; Tuesta et al., 2011; Volkow et al., 2011). Recently the habenulo-interpeduncular (Hb-IPN) midbrain pathway has re-emerged as a new critical crossroad that influences the brain response to nicotine. This brain area is particularly enriched in nicotinic acetylcholine receptor (nAChR) subunits α5, α3 and ß4 encoded by the CHRNA5-A3-B4 gene cluster, which has been associated with vulnerability to tobacco dependence in human genetics studies. This finding, together with studies in mice involving deletion and replacement of nAChR subunits, and investigations of the circuitry, cell types and electrophysiological properties, have begun to identify the molecular mechanisms that take place in the MHb-IPN which underlie critical aspects of nicotine dependence. In the current review we describe the anatomical and functional connections of the MHb-IPN system, as well as the contribution of specific nAChRs subtypes in nicotine-mediated behaviors. Finally, we discuss the specific electrophysiological properties of MHb-IPN neuronal populations and how nicotine exposure alters their cellular physiology, highlighting the unique role of the MHb-IPN in the context of nicotine aversion and withdrawal. This article is part of the Special Issue entitled 'The Nicotinic Acetylcholine Receptor: From Molecular Biology to Cognition'.
Asunto(s)
Habénula/metabolismo , Núcleo Interpeduncular/metabolismo , Neuronas/metabolismo , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Receptores Nicotínicos/metabolismo , Síndrome de Abstinencia a Sustancias/metabolismo , Animales , Habénula/citología , Habénula/efectos de los fármacos , Humanos , Núcleo Interpeduncular/citología , Núcleo Interpeduncular/efectos de los fármacos , Ratones , Vías Nerviosas/efectos de los fármacos , Vías Nerviosas/metabolismo , Neuronas/efectos de los fármacos , Síndrome de Abstinencia a Sustancias/fisiopatología , Tabaquismo/complicacionesRESUMEN
The CHRNA5-CHRNA3-CHRNB4 gene cluster, encoding the α5, α3, and ß4 nicotinic acetylcholine receptor (nAChR) subunits, has been linked to nicotine dependence. The habenulo-interpeduncular (Hb-IPN) tract is particularly enriched in α3ß4 nAChRs. We recently showed that modulation of these receptors in the medial habenula (MHb) in mice altered nicotine consumption. Given that ß4 is rate-limiting for receptor activity and that single nucleotide polymorphisms (SNPs) in CHRNB4 have been linked to altered risk of nicotine dependence in humans, we were interested in determining the contribution of allelic variants of ß4 to nicotine receptor activity in the MHb. We screened for missense SNPs that had allele frequencies >0.0005 and introduced the corresponding substitutions in Chrnb4. Fourteen variants were analyzed by co-expression with α3. We found that ß4A90I and ß4T374I variants, previously shown to associate with reduced risk of smoking, and an additional variant ß4D447Y, significantly increased nicotine-evoked current amplitudes, while ß4R348C, the mutation most frequently encountered in sporadic amyotrophic lateral sclerosis (sALS), showed reduced nicotine currents. We employed lentiviruses to express ß4 or ß4 variants in the MHb. Immunoprecipitation studies confirmed that ß4 lentiviral-mediated expression leads to specific upregulation of α3ß4 but not ß2 nAChRs in the Mhb. Mice injected with the ß4-containing virus showed pronounced aversion to nicotine as previously observed in transgenic Tabac mice overexpressing Chrnb4 at endogenous sites including the MHb. Habenular expression of the ß4 gain-of-function allele T374I also resulted in strong aversion, while transduction with the ß4 loss-of function allele R348C failed to induce nicotine aversion. Altogether, these data confirm the critical role of habenular ß4 in nicotine consumption, and identify specific SNPs in CHRNB4 that modify nicotine-elicited currents and alter nicotine consumption in mice.
RESUMEN
The discovery of genetic variants in the cholinergic receptor nicotinic CHRNA5-CHRNA3-CHRNB4 gene cluster associated with heavy smoking and higher relapse risk has led to the identification of the midbrain habenula-interpeduncular axis as a critical relay circuit in the control of nicotine dependence. Although clear roles for α3, ß4, and α5 receptors in nicotine aversion and withdrawal have been established, the cellular and molecular mechanisms that participate in signaling nicotine use and contribute to relapse have not been identified. Here, using translating ribosome affinity purification (TRAP) profiling, electrophysiology, and behavior, we demonstrate that cholinergic neurons, but not peptidergic neurons, of the medial habenula (MHb) display spontaneous tonic firing of 2-10 Hz generated by hyperpolarization-activated cyclic nucleotide-gated (HCN) pacemaker channels and that infusion of the HCN pacemaker antagonist ZD7288 in the habenula precipitates somatic and affective signs of withdrawal. Further, we show that a strong, α3ß4-dependent increase in firing frequency is observed in these pacemaker neurons upon acute exposure to nicotine. No change in the basal or nicotine-induced firing was observed in cholinergic MHb neurons from mice chronically treated with nicotine. We observe, however, that, during withdrawal, reexposure to nicotine doubles the frequency of pacemaking activity in these neurons. These findings demonstrate that the pacemaking mechanism of cholinergic MHb neurons controls withdrawal, suggesting that the heightened nicotine sensitivity of these neurons during withdrawal may contribute to smoking relapse.
Asunto(s)
Relojes Biológicos/efectos de los fármacos , Neuronas Colinérgicas , Habénula , Nicotina/efectos adversos , Agonistas Nicotínicos/efectos adversos , Síndrome de Abstinencia a Sustancias , Animales , Cardiotónicos/farmacología , Neuronas Colinérgicas/metabolismo , Neuronas Colinérgicas/patología , Habénula/metabolismo , Habénula/patología , Habénula/fisiopatología , Humanos , Ratones , Nicotina/farmacología , Agonistas Nicotínicos/farmacología , Pirimidinas/farmacología , Fumar/metabolismo , Fumar/patología , Fumar/fisiopatología , Cese del Hábito de Fumar , Síndrome de Abstinencia a Sustancias/metabolismo , Síndrome de Abstinencia a Sustancias/patología , Síndrome de Abstinencia a Sustancias/fisiopatologíaRESUMEN
Classical electron microscopic studies of the mammalian brain revealed two major classes of synapses, distinguished by the presence of a large postsynaptic density (PSD) exclusively at type 1, excitatory synapses. Biochemical studies of the PSD have established the paradigm of the synapse as a complex signal-processing machine that controls synaptic plasticity. We report here the results of a proteomic analysis of type 2, inhibitory synaptic complexes isolated by affinity purification from the cerebral cortex. We show that these synaptic complexes contain a variety of neurotransmitter receptors, neural cell-scaffolding and adhesion molecules, but that they are entirely lacking in cell signaling proteins. This fundamental distinction between the functions of type 1 and type 2 synapses in the nervous system has far reaching implications for models of synaptic plasticity, rapid adaptations in neural circuits, and homeostatic mechanisms controlling the balance of excitation and inhibition in the mature brain.
Asunto(s)
Corteza Cerebral/metabolismo , Inhibición Neural/fisiología , Sinapsis/metabolismo , Animales , Células HEK293 , Humanos , Espectrometría de Masas , Ratones , Ratones Transgénicos , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/aislamiento & purificación , Proteínas del Tejido Nervioso/metabolismo , Transporte de Proteínas , Receptores de GABA-A/metabolismo , Sinapsis/ultraestructura , XenopusRESUMEN
A large number of studies have demonstrated that the nucleus accumbens (NAC) is a critical site in the neuronal circuits controlling reward responses, motivation, and mood, but the neuronal cell type(s) underlying these processes are not yet known. Identification of the neuronal cell types that regulate depression-like states will guide us in understanding the biological basis of mood and its regulation by diseases like major depressive disorder. Taking advantage of recent findings demonstrating that the serotonin receptor chaperone, p11, is an important molecular regulator of depression-like states, here we identify cholinergic interneurons (CINs) as a primary site of action for p11 in the NAC. Depression-like behavior is observed in mice after decrease of p11 levels in NAC CINs. This phenotype is recapitulated by silencing neuronal transmission in these cells, demonstrating that accumbal cholinergic neuronal activity regulates depression-like behaviors and suggesting that accumbal CIN activity is crucial for the regulation of mood and motivation.