RESUMEN
INTRODUCTION: The Hippo pathway and its transcriptional effectors yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are targets for cancer therapy. It is important to determine if the activation of one factor compensates for the inhibition of the other. Moreover, it is unknown if YAP/TAZ-directed perturbation affects cell-cell communication of non-malignant liver cells. MATERIALS AND METHODS: To investigate liver-specific phenotypes caused by YAP and TAZ inactivation, we generated mice with hepatocyte (HC) and biliary epithelial cell (BEC)-specific deletions for both factors (YAPKO, TAZKO and double knock-out (DKO)). Immunohistochemistry, single-cell sequencing, and proteomics were used to analyze liver tissues and serum. RESULTS: The loss of BECs, liver fibrosis, and necrosis characterized livers from YAPKO and DKO mice. This phenotype was weakened in DKO tissues compared to specimens from YAPKO animals. After depletion of YAP in HCs and BECs, YAP expression was induced in non-parenchymal cells (NPCs) in a cholestasis-independent manner. YAP positivity was detected in subgroups of Kupffer cells (KCs) and endothelial cells (ECs). The secretion of pro-inflammatory chemokines and cytokines such as C-X-C motif chemokine ligand 11 (CXCL11), fms-related receptor tyrosine kinase 3 ligand (FLT3L), and soluble intercellular adhesion molecule-1 (ICAM1) was increased in the serum of YAPKO animals. YAP activation in NPCs could contribute to inflammation via TEA domain transcription factor (TEAD)-dependent transcriptional regulation of secreted factors. CONCLUSION: YAP inactivation in HCs and BECs causes liver damage, and concomitant TAZ deletion does not enhance but reduces this phenotype. Additionally, we present a new mechanism by which YAP contributes to cell-cell communication originating from NPCs.
Asunto(s)
Comunicación Celular , Hígado , Proteínas Señalizadoras YAP , Animales , Ratones , Comunicación Celular/genética , Células Endoteliales , Hepatocitos , Ligandos , Hígado/metabolismo , Proteínas Señalizadoras YAP/genética , Proteínas Señalizadoras YAP/metabolismoRESUMEN
In higher plants, sexual reproduction is characterized by meiosis of the first cells of the germlines, and double fertilization of the egg and central cell after gametogenesis. In contrast, in apomicts of the genus Boechera, meiosis is omitted or altered and only the central cell requires fertilization, while the embryo forms parthenogenetically from the egg cell. To deepen the understanding of the transcriptional basis underlying these differences, we applied RNA-seq to compare expression in reproductive tissues of different Boechera accessions. This confirmed previous evidence of an enrichment of RNA helicases in plant germlines. Furthermore, few RNA helicases were differentially expressed in female reproductive ovule tissues harboring mature gametophytes from apomictic and sexual accessions. For some of these genes, we further found evidence for a complex recent evolutionary history. This included a homolog of Arabidopsis thaliana FASCIATED STEM4 (FAS4). In contrast to AtFAS4, which is a single-copy gene, FAS4 is represented by three homologs in Boechera, suggesting a potential for subfunctionalization to modulate reproductive development. To gain first insights into functional roles of FAS4, we studied Arabidopsis lines carrying mutant alleles. This identified the crucial importance of AtFAS4 for reproduction, as we observed developmental defects and arrest during male and female gametogenesis.
Asunto(s)
Apomixis , Arabidopsis , Brassicaceae , Brassicaceae/genética , Arabidopsis/genética , Reproducción/genética , Evolución Biológica , Ciclo Celular , Apomixis/genéticaRESUMEN
Large-scale chromosomal aberrations are prevalent in human cancer, but their function remains poorly understood. We established chromosome-engineered hepatocellular carcinoma cell lines using CRISPR-Cas9 genome editing. A 33-mega-base pair region on chromosome 8p (chr8p) was heterozygously deleted, mimicking a frequently observed chromosomal deletion. Using this isogenic model system, we delineated the functional consequences of chr8p loss and its impact on metastatic behavior and patient survival. We found that metastasis-associated genes on chr8p act in concert to induce an aggressive and invasive phenotype characteristic for chr8p-deleted tumors. Genome-wide CRISPR-Cas9 viability screening in isogenic chr8p-deleted cells served as a powerful tool to find previously unidentified synthetic lethal targets and vulnerabilities accompanying patient-specific chromosomal alterations. Using this target identification strategy, we showed that chr8p deletion sensitizes tumor cells to targeting of the reactive oxygen sanitizing enzyme Nudix hydrolase 17. Thus, chromosomal engineering allowed for the identification of novel synthetic lethalities specific to chr8p loss of heterozygosity.
Asunto(s)
Neoplasias Hepáticas , Mutaciones Letales Sintéticas , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Deleción Cromosómica , Aberraciones Cromosómicas , Cromosomas , Sistemas CRISPR-CasRESUMEN
BACKGROUND & AIMS: As pancreatic ductal adenocarcinoma (PDAC) continues to be recalcitrant to therapeutic interventions, including poor response to immunotherapy, albeit effective in other solid malignancies, a more nuanced understanding of the immune microenvironment in PDAC is urgently needed. We aimed to unveil a detailed view of the immune micromilieu in PDAC using a spatially resolved multimodal single-cell approach. METHODS: We applied single-cell RNA sequencing, spatial transcriptomics, multiplex immunohistochemistry, and mass cytometry to profile the immune compartment in treatment-naïve PDAC tumors and matched adjacent normal pancreatic tissue, as well as in the systemic circulation. We determined prognostic associations of immune signatures and performed a meta-analysis of the immune microenvironment in PDAC and lung adenocarcinoma on single-cell level. RESULTS: We provided a spatially resolved fine map of the immune landscape in PDAC. We substantiated the exhausted phenotype of CD8 T cells and immunosuppressive features of myeloid cells, and highlighted immune subsets with potentially underappreciated roles in PDAC that diverged from immune populations within adjacent normal areas, particularly CD4 T cell subsets and natural killer T cells that are terminally exhausted and acquire a regulatory phenotype. Differential analysis of immune phenotypes in PDAC and lung adenocarcinoma revealed the presence of extraordinarily immunosuppressive subtypes in PDAC, along with a distinctive immune checkpoint composition. CONCLUSIONS: Our study sheds light on the multilayered immune dysfunction in PDAC and presents a holistic view of the immune landscape in PDAC and lung adenocarcinoma, providing a comprehensive resource for functional studies and the exploration of therapeutically actionable targets in PDAC.
Asunto(s)
Adenocarcinoma del Pulmón , Carcinoma Ductal Pancreático , Enfermedades del Sistema Inmune , Neoplasias Pancreáticas , Humanos , Multiómica , Neoplasias Pancreáticas/patología , Carcinoma Ductal Pancreático/terapia , Carcinoma Ductal Pancreático/tratamiento farmacológico , Análisis de la Célula Individual , Microambiente Tumoral , Neoplasias PancreáticasRESUMEN
Peptide-loaded MHC class I (pMHC-I) multimers have revolutionized our capabilities to monitor disease-associated T cell responses with high sensitivity and specificity. To improve the discovery of T cell receptors (TCR) targeting neoantigens of individual tumor patients with recombinant MHC molecules, we developed a peptide-loadable MHC class I platform termed MediMer. MediMers are based on soluble disulfide-stabilized ß2-microglobulin/heavy chain ectodomain single-chain dimers (dsSCD) that can be easily produced in large quantities in eukaryotic cells and tailored to individual patients' HLA allotypes with only little hands-on time. Upon transient expression in CHO-S cells together with ER-targeted BirA biotin ligase, biotinylated dsSCD are purified from the cell supernatant and are ready to use. We show that CHO-produced dsSCD are free of endogenous peptide ligands. Empty dsSCD from more than 30 different HLA-A,B,C allotypes, that were produced and validated so far, can be loaded with synthetic peptides matching the known binding criteria of the respective allotypes, and stored at low temperature without loss of binding activity. We demonstrate the usability of peptide-loaded dsSCD multimers for the detection of human antigen-specific T cells with comparable sensitivities as multimers generated with peptide-tethered ß2m-HLA heavy chain single-chain trimers (SCT) and wild-type peptide-MHC-I complexes prior formed in small-scale refolding reactions. Using allotype-specific, fluorophore-labeled competitor peptides, we present a novel dsSCD-based peptide binding assay capable of interrogating large libraries of in silico predicted neoepitope peptides by flow cytometry in a high-throughput and rapid format. We discovered rare T cell populations with specificity for tumor neoepitopes and epitopes from shared tumor-associated antigens in peripheral blood of a melanoma patient including a so far unreported HLA-C*08:02-restricted NY-ESO-1-specific CD8+ T cell population. Two representative TCR of this T cell population, which could be of potential value for a broader spectrum of patients, were identified by dsSCD-guided single-cell sequencing and were validated by cognate pMHC-I multimer staining and functional responses to autologous peptide-pulsed antigen presenting cells. By deploying the technically accessible dsSCD MHC-I MediMer platform, we hope to significantly improve success rates for the discovery of personalized neoepitope-specific TCR in the future by being able to also cover rare HLA allotypes.
Asunto(s)
Linfocitos T CD8-positivos , Péptidos , Humanos , Receptores de Antígenos de Linfocitos T , Antígenos HLA/metabolismo , Antígenos de NeoplasiasRESUMEN
Josephson parametric amplifiers (JPAs) approaching quantum-limited noise performance have been instrumental in enabling high fidelity readout of superconducting qubits and, recently, semiconductor quantum dots (QDs). We propose that the quantum capacitance arising in electronic two-level systems (the dual of Josephson inductance) can provide an alternative dissipationless nonlinear element for parametric amplification. We experimentally demonstrate phase-sensitive parametric amplification using a QD-reservoir electron transition in a CMOS nanowire split-gate transistor embedded in a 1.8 GHz superconducting lumped-element microwave cavity, achieving parametric gains of -3 to +3 dB, limited by Sisyphus dissipation. Using a semiclassical model, we find an optimized design within current technological capabilities could achieve gains and bandwidths comparable to JPAs, while providing complementary specifications with respect to integration in semiconductor platforms or operation at higher magnetic fields.
RESUMEN
Plant sexual and asexual reproduction through seeds (apomixis) is tightly controlled by complex gene regulatory programs, which are not yet fully understood. Recent findings suggest that RNA helicases are required for plant germline development. This resembles their crucial roles in animals, where they are involved in controlling gene activity and the maintenance of genome integrity. Here, we identified previously unknown roles of Arabidopsis RH17 during reproductive development. Interestingly, RH17 is involved in repression of reproductive fate and of elements of seed development in the absence of fertilization. In lines carrying a mutant rh17 allele, development of supernumerary reproductive cell lineages in the female flower tissues (ovules) was observed, occasionally leading to formation of two embryos per seed. Furthermore, seed coat, and putatively also endosperm development, frequently initiated autonomously. Such induction of several features phenocopying distinct elements of apomixis by a single mutation is unusual and suggests that RH17 acts in regulatory control of plant reproductive development. Furthermore, an in-depth understanding of its action might be of use for agricultural applications.
Asunto(s)
Proteínas de Arabidopsis/genética , ARN Helicasas DEAD-box/genética , Semillas/genética , Apomixis , Arabidopsis , Proteínas de Arabidopsis/metabolismo , ARN Helicasas DEAD-box/metabolismo , Endospermo/genética , Endospermo/fisiología , Mutación , Óvulo Vegetal/genética , Óvulo Vegetal/metabolismo , Óvulo Vegetal/fisiología , Polen/genética , Polen/metabolismo , Polen/fisiología , Semillas/metabolismo , Semillas/fisiologíaRESUMEN
The ubiquitous redox coenzyme nicotinamide adenine dinucleotide (NAD) acts as a non-canonical cap structure on prokaryotic and eukaryotic ribonucleic acids. Here we find that in budding yeast, NAD-RNAs are abundant (>1400 species), short (<170 nt), and mostly correspond to mRNA 5'-ends. The modification percentage of transcripts is low (<5%). NAD incorporation occurs mainly during transcription initiation by RNA polymerase II, which uses distinct promoters with a YAAG core motif for this purpose. Most NAD-RNAs are 3'-truncated. At least three decapping enzymes, Rai1, Dxo1, and Npy1, guard against NAD-RNA at different cellular locations, targeting overlapping transcript populations. NAD-mRNAs are not translatable in vitro. Our work indicates that in budding yeast, most of the NAD incorporation into RNA seems to be disadvantageous to the cell, which has evolved a diverse surveillance machinery to prematurely terminate, decap and reject NAD-RNAs.
Asunto(s)
Endorribonucleasas/metabolismo , NAD/metabolismo , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Núcleo Celular/genética , Pirofosfatasas/metabolismo , Estabilidad del ARN , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcripción GenéticaRESUMEN
Cancer cell lines allow the identification of clinically relevant alterations and the prediction of drug response. However, sequencing data for hepatobiliary cancer cell lines in general, and particularly gallbladder cancer (GBC), are sparse. Here, we apply RNA sequencing to characterize 10 GBC, eight hepatocellular carcinoma, and five cholangiocarcinoma (CCA) cell lines. RNA extraction, quality control, library preparation, sequencing, and pre-processing of sequencing data were implemented using state-of-the-art techniques. Public data from the MSK-IMPACT database and a large cohort of Japanese biliary tract cancer patients were used to illustrate the usage of the released data. The total number of exonic mutations varied from 7207 for the cell line NOZ to 9760 for HuCCT1. Researchers planning experiments that require TP53 mutations could use the cell lines NOZ, OCUG-1, SNU308, or YoMi. Mz-Cha-1 showed mutations in ATM, SNU308 presented SMAD4 mutations, and the only investigated cell line that showed ARID1A mutations was GB-d1. SNU478 was the cell line with the global gene expression pattern most similar to GBC, intrahepatic CCA, and extrahepatic CCA. EGFR, KMT2D, and KMT2C generally presented a higher expression in the investigated cell lines than in Japanese primary GBC tumors. We provide the scientific community with detailed mutation and gene expression data, together with three showcase applications, with the aim of facilitating the design of future in vitro cell culture assays for research on hepatobiliary cancer.
RESUMEN
In higher plants, sexual and asexual reproductions through seeds (apomixis) have evolved as alternative strategies. Evolutionary advantages leading to coexistence of both reproductive modes are currently not well understood. It is expected that accumulation of deleterious mutations leads to a rapid elimination of apomictic lineages from populations. In this line, apomixis originated repeatedly, likely from deregulation of the sexual pathway, leading to alterations in the development of reproductive lineages (germlines) in apomicts as compared with sexual plants. This potentially involves mutations in genes controlling reproduction. Increasing evidence suggests that RNA helicases are crucial regulators of germline development. To gain insights into the evolution of 58 members of this diverse gene family in sexual and apomictic plants, we applied target enrichment combined with next-generation sequencing to identify allelic variants from 24 accessions of the genus Boechera, comprising sexual, facultative, and obligate apomicts. Interestingly, allelic variants from apomicts did not show consistently increased mutation frequency. Either sequences were highly conserved in any accession, or allelic variants preferentially harbored mutations in evolutionary less conserved C- and N-terminal domains, or presented high mutation load independent of the reproductive mode. Only for a few genes allelic variants harboring deleterious mutations were only identified in apomicts. To test if high sequence conservation correlates with roles in fundamental cellular or developmental processes, we analyzed Arabidopsis thaliana mutant lines in VASA-LIKE (VASL), and identified pleiotropic defects during ovule and reproductive development. This indicates that also in apomicts mechanisms of selection are in place based on gene function.
Asunto(s)
Apomixis , Brassicaceae/enzimología , Brassicaceae/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Proteínas de Plantas/genética , ARN Helicasas/genética , Brassicaceae/crecimiento & desarrollo , Evolución Molecular , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Fenotipo , Proteínas de Plantas/metabolismo , ARN Helicasas/metabolismoRESUMEN
Germline specification is the first step during sexual and apomictic plant reproduction, and takes place in the nucellus of the ovule, a specialized domain of the reproductive flower tissues. In each case, a sporophytic cell is determined to form the sexual megaspore mother cell (MMC) or an apomictic initial cell (AIC). These differ in their developmental fates: while the MMC undergoes meiosis, the AIC modifies or omits meiosis to form the female gametophyte. Despite great interest in these distinct developmental processes, little is known about their gene regulatory basis. To elucidate the gene regulatory networks underlying germline specification, we conducted tissue-specific transcriptional profiling using laser-assisted microdissection and RNA sequencing to compare the transcriptomes of nucellar tissues between different sexual and apomictic Boechera accessions representing four species and two ploidy levels. This allowed us to distinguish between expression differences caused by genetic background or reproductive mode. Statistical data analysis revealed 45 genes that were significantly differentially expressed, and which potentially play a role for determination of the reproductive mode. Based on annotations, these included F-box genes and E3 ligases that most likely relate to genes previously described as regulators important for germline development. Our findings provide novel insights into the transcriptional basis of sexual and apomictic reproduction.
Asunto(s)
Brassicaceae/genética , Brassicaceae/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Apomixis/genética , Apomixis/fisiología , Brassicaceae/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Células Germinativas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
We present the genome of the moon jellyfish Aurelia, a genome from a cnidarian with a medusa life stage. Our analyses suggest that gene gain and loss in Aurelia is comparable to what has been found in its morphologically simpler relatives-the anthozoan corals and sea anemones. RNA sequencing analysis does not support the hypothesis that taxonomically restricted (orphan) genes play an oversized role in the development of the medusa stage. Instead, genes broadly conserved across animals and eukaryotes play comparable roles throughout the life cycle. All life stages of Aurelia are significantly enriched in the expression of genes that are hypothesized to interact in protein networks found in bilaterian animals. Collectively, our results suggest that increased life cycle complexity in Aurelia does not correlate with an increased number of genes. This leads to two possible evolutionary scenarios: either medusozoans evolved their complex medusa life stage (with concomitant shifts into new ecological niches) primarily by re-working genetic pathways already present in the last common ancestor of cnidarians, or the earliest cnidarians had a medusa life stage, which was subsequently lost in the anthozoans. While we favour the earlier hypothesis, the latter is consistent with growing evidence that many of the earliest animals were more physically complex than previously hypothesized.
Asunto(s)
Genoma , Escifozoos/genética , Animales , Evolución MolecularRESUMEN
All of our current knowledge of African trypanosome metabolism is based on results from trypanosomes grown in culture or in rodents. Drugs against sleeping sickness must however treat trypanosomes in humans. We here compare the transcriptomes of Trypanosoma brucei rhodesiense from the blood and cerebrospinal fluid of human patients with those of trypanosomes from culture and rodents. The data were aligned and analysed using new user-friendly applications designed for Kinetoplastid RNA-Seq data. The transcriptomes of trypanosomes from human blood and cerebrospinal fluid did not predict major metabolic differences that might affect drug susceptibility. Usefully, there were relatively few differences between the transcriptomes of trypanosomes from patients and those of similar trypanosomes grown in rats. Transcriptomes of monomorphic laboratory-adapted parasites grown in in vitro culture closely resembled those of the human parasites, but some differences were seen. In poly(A)-selected mRNA transcriptomes, mRNAs encoding some protein kinases and RNA-binding proteins were under-represented relative to mRNA that had not been poly(A) selected; further investigation revealed that the selection tends to result in loss of longer mRNAs.
Asunto(s)
Perfilación de la Expresión Génica , ARN Protozoario/aislamiento & purificación , Transcriptoma , Trypanosoma brucei rhodesiense/genética , Trypanosoma brucei rhodesiense/aislamiento & purificación , Tripanosomiasis Africana/parasitología , Animales , Técnicas Bacteriológicas/métodos , ADN de Cinetoplasto/genética , Humanos , Proteínas Quinasas/genética , Proteínas Protozoarias/genética , ARN Mensajero/genética , ARN Protozoario/genética , Proteínas de Unión al ARN/genética , Ratas , Roedores/parasitología , Trypanosoma brucei rhodesiense/crecimiento & desarrollo , Trypanosoma brucei rhodesiense/metabolismo , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/líquido cefalorraquídeoRESUMEN
DNA adenine methyltransferase identification (DamID) has emerged as an alternative method to profile protein-DNA interactions; however, critical issues limit its widespread applicability. Here, we present iDamIDseq, a protocol that improves specificity and sensitivity by inverting the steps DpnI-DpnII and adding steps that involve a phosphatase and exonuclease. To determine genome-wide protein-DNA interactions efficiently, we present the analysis tool iDEAR (iDamIDseq Enrichment Analysis with R). The combination of DamID and iDEAR permits the establishment of consistent profiles for transcription factors, even in transient assays, as we exemplify using the small teleost medaka (Oryzias latipes). We report that the bacterial Dam-coding sequence induces aberrant splicing when it is used with different promoters to drive tissue-specific expression. Here, we present an optimization of the sequence to avoid this problem. This and our other improvements will allow researchers to use DamID effectively in any organism, in a general or targeted manner.
Asunto(s)
Algoritmos , Cromatina/metabolismo , Biología Computacional/métodos , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Metiltransferasa de ADN de Sitio Específico (Adenina Especifica)/metabolismo , Factores de Transcripción/metabolismo , Animales , Sitios de Unión/genética , Metilación de ADN , Proteínas de Unión al ADN/aislamiento & purificación , Bases de Datos Genéticas , Embrión no Mamífero , Regulación de la Expresión Génica/genética , Oryzias/embriología , Oryzias/genética , Oryzias/metabolismo , Regiones Promotoras Genéticas , Unión Proteica , Mapeo de Interacción de Proteínas/métodos , Análisis de Secuencia de ADN/métodosRESUMEN
Balanced chromosome abnormalities (BCAs) occur at a high frequency in healthy and diseased individuals, but cost-efficient strategies to identify BCAs and evaluate whether they contribute to a phenotype have not yet become widespread. Here we apply genome-wide mate-pair library sequencing to characterize structural variation in a patient with unclear neurodevelopmental disease (NDD) and complex de novo BCAs at the karyotype level. Nucleotide-level characterization of the clinically described BCA breakpoints revealed disruption of at least three NDD candidate genes (LINC00299, NUP205, PSMD14) that gave rise to abnormal mRNAs and could be assumed as disease-causing. However, unbiased genome-wide analysis of the sequencing data for cryptic structural variation was key to reveal an additional submicroscopic inversion that truncates the schizophrenia- and bipolar disorder-associated brain transcription factor ZNF804A as an equally likely NDD-driving gene. Deep sequencing of fluorescent-sorted wild-type and derivative chromosomes confirmed the clinically undetected BCA. Moreover, deep sequencing further validated a high accuracy of mate-pair library sequencing to detect structural variants larger than 10 kB, proposing that this approach is powerful for clinical-grade genome-wide structural variant detection. Our study supports previous evidence for a role of ZNF804A in NDD and highlights the need for a more comprehensive assessment of structural variation in karyotypically abnormal individuals and patients with neurocognitive disease to avoid diagnostic deception.
Asunto(s)
Aberraciones Cromosómicas , Trastornos del Neurodesarrollo/genética , Trastorno Bipolar/genética , Preescolar , Consanguinidad , Variación Genética , Estudio de Asociación del Genoma Completo , Humanos , Pruebas de Inteligencia , Cariotipificación , Factores de Transcripción de Tipo Kruppel/genética , Trastornos del Desarrollo del Lenguaje , Imagen por Resonancia Magnética , Masculino , Complejo de la Endopetidasa Proteasomal/genética , Esquizofrenia/genética , Análisis de Secuencia de ADN , Transactivadores/genéticaRESUMEN
Nucleoid-associated proteins (NAPs) are global regulators of gene expression in Escherichia coli, which affect DNA conformation by bending, wrapping and bridging the DNA. Two of these--H-NS and Fis--bind to specific DNA sequences and structures. Because of their importance to global gene expression, the binding of these NAPs to the DNA was previously investigated on a genome-wide scale using ChIP-chip. However, variation in their binding profiles across the growth phase and the genome-scale nature of their impact on gene expression remain poorly understood. Here, we present a genome-scale investigation of H-NS and Fis binding to the E. coli chromosome using chromatin immunoprecipitation combined with high-throughput sequencing (ChIP-seq). By performing our experiments under multiple time-points during growth in rich media, we show that the binding regions of the two proteins are mutually exclusive under our experimental conditions. H-NS binds to significantly longer tracts of DNA than Fis, consistent with the linear spread of H-NS binding from high- to surrounding lower-affinity sites; the length of binding regions is associated with the degree of transcriptional repression imposed by H-NS. For Fis, a majority of binding events do not lead to differential expression of the proximal gene; however, it has a significant indirect effect on gene expression partly through its effects on the expression of other transcription factors. We propose that direct transcriptional regulation by Fis is associated with the interaction of tandem arrays of Fis molecules to the DNA and possible DNA bending, particularly at operon-upstream regions. Our study serves as a proof-of-principle for the use of ChIP-seq for global DNA-binding proteins in bacteria, which should become significantly more economical and feasible with the development of multiplexing techniques.
Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/metabolismo , Proteínas Fimbrias/metabolismo , Regulación Bacteriana de la Expresión Génica , Sitios de Unión , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/química , ADN Bacteriano/metabolismo , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Factor Proteico para Inverción de Estimulación/genética , Proteínas Fimbrias/genética , Eliminación de Gen , Transcripción GenéticaRESUMEN
BACKGROUND: MicroRNAs are small non-coding RNAs that post-transcriptionally regulate gene expression and their expression is frequently altered in human diseases, including cancer. To correlate clinically relevant parameters with microRNA expression, total RNA is frequently prepared from samples that were archived for various time periods in frozen tissue banks but, unfortunately, RNA integrity is not always preserved in these frozen tissues. Here, we investigate whether experimentally induced RNA degradation affects microRNA expression profiles. RESULTS: Tissue samples were maintained on ice for defined time periods prior to total RNA extraction, which resulted in different degrees of RNA degradation. MicroRNA expression was then analyzed by microarray analysis (miCHIP) or microRNA-specific real-time quantitative PCR (miQPCR). Our results demonstrate that the loss of RNA integrity leads to in unpredictability of microRNA expression profiles for both, array-based and miQPCR assays. CONCLUSION: MicroRNA expression cannot be reliably profiled in degraded total RNA. For the profiling of microRNAs we recommend use of RNA samples with a RNA integrity number equal to or above seven.
Asunto(s)
Perfilación de la Expresión Génica/métodos , MicroARNs/metabolismo , Estabilidad del ARN , Animales , Análisis por Conglomerados , Femenino , Ratones , Análisis de Secuencia por Matrices de Oligonucleótidos , Reacción en Cadena de la Polimerasa de Transcriptasa InversaRESUMEN
Processes that regulate gene transcription are directly under the influence of the genome organization. The epigenome contains additional information that is not brought by DNA sequence, and generates spatial and functional constraints that complement genetic instructions. DNA methylation on CpGs constitutes an epigenetic mark generally correlated with transcriptionally silent condensed chromatin. Replication of methylation patterns by DNA methyltransferases maintains genome stability through cell division. Here we present evidence of an unanticipated dynamic role for DNA methylation in gene regulation in human cells. Periodic, strand-specific methylation/demethylation occurs during transcriptional cycling of the pS2/TFF1 gene promoter on activation by oestrogens. DNA methyltransferases exhibit dual actions during these cycles, being involved in CpG methylation and active demethylation of 5mCpGs through deamination. Inhibition of this process precludes demethylation of the pS2 gene promoter and its subsequent transcriptional activation. Cyclical changes in the methylation status of promoter CpGs may thus represent a critical event in transcriptional achievement.
Asunto(s)
Metilación de ADN , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética , Activación Transcripcional/genética , Proteínas Supresoras de Tumor/genética , Línea Celular , Inmunoprecipitación de Cromatina , Islas de CpG/genética , ADN (Citosina-5-)-Metiltransferasas/antagonistas & inhibidores , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Metilación de ADN/efectos de los fármacos , Reparación del ADN , Desaminación , Estrógenos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , Timina ADN Glicosilasa/metabolismo , Transcripción Genética/efectos de los fármacos , Activación Transcripcional/efectos de los fármacos , Factor Trefoil-1RESUMEN
Methylation of CpG dinucleotides is generally associated with epigenetic silencing of transcription and is maintained through cellular division. Multiple CpG sequences are rare in mammalian genomes, but frequently occur at the transcriptional start site of active genes, with most clusters of CpGs being hypomethylated. We reported previously that the proximal region of the trefoil factor 1 (TFF1, also known as pS2) and oestrogen receptor alpha (ERalpha) promoters could be partially methylated by treatment with deacetylase inhibitors, suggesting the possibility of dynamic changes in DNA methylation. Here we show that cyclical methylation and demethylation of CpG dinucleotides, with a periodicity of around 100 min, is characteristic for five selected promoters, including the oestrogen (E2)-responsive pS2 gene, in human cells. When the pS2 gene is actively transcribed, DNA methylation occurs after the cyclical occupancy of ERalpha and RNA polymerase II (polII). Moreover, we report conditions that provoke methylation cycling of the pS2 promoter in cell lines in which pS2 expression is quiescent and the proximal promoter is methylated. This coincides with a low-level re-expression of ERalpha and of pS2 transcripts.
Asunto(s)
Metilación de ADN , ADN/metabolismo , Regulación de la Expresión Génica , Regiones Promotoras Genéticas/genética , Línea Celular Tumoral , Islas de CpG/genética , ADN/genética , Metilación de ADN/efectos de los fármacos , Doxorrubicina/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , ARN Polimerasa II/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Factores de Tiempo , Transcripción Genética/efectos de los fármacos , Factor Trefoil-1 , Proteínas Supresoras de Tumor/genéticaRESUMEN
Valproate (VPA) and trichostatin A (TSA), inhibitors of zinc-dependent deacetylase activity, induce reduction in the levels of mRNA encoding oestrogen receptor-alpha (ERalpha), resulting in subsequent clearance of ERalpha protein from breast and ovarian cell lines. Inhibition of oestrogen signalling may account for the endocrine disorders, menstrual abnormalities, osteoporosis and weight gain that occur in a proportion of women treated with VPA for epilepsy or for bipolar mood disorder. Transcriptome profiling revealed that VPA and TSA also modulate the expression of, among others, key regulatory components of the cell cycle. Meta-analysis of genes directly responsive to oestrogen indicates that VPA and TSA have a generally antioestrogenic profile in ERalpha positive cells. Concomitant treatment with cycloheximide prevented most of these changes in gene expression, including downregulation of ERalpha mRNA, indicating that a limited number of genes signal a hyperacetylated state within cells. Three members of the NAD-dependent deacetylases, the sirtuins, are upregulated by VPA and by TSA and sirtuin activity contributes to loss of ERalpha expression. However, prolonged inhibition of the sirtuins by sirtinol also induces loss of ERalpha from cells. Mechanistically, we show that VPA invokes reversible promoter shutoff of the ERalpha, pS2 and cyclin D1 promoters, by inducing recruitment of methyl cytosine binding protein 2 (MeCP2) with concomitant exclusion of the maintenance methylase DNMT1. Furthermore, we demonstrate that, in the presence of VPA, local DNA methylation, deacetylation and demethylation of activated histones and recruitment of inhibitory complexes occurs on the pS2 promoter.