Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Life (Basel) ; 13(11)2023 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-38004275

RESUMEN

Juncus acutus, acknowledged through its indigenous nomenclature "samar", is part of the Juncaceae taxonomic lineage, bearing considerable import as a botanical reservoir harboring conceivable therapeutic attributes. Its historical precedence in traditional curative methodologies for the alleviation of infections and inflammatory conditions is notable. In the purview of Eastern traditional medicine, Juncus species seeds find application for their remedial efficacy in addressing diarrhea, while the botanical fruits are subjected to infusion processes targeting the attenuation of symptoms associated with cold manifestations. The primary objective of this study was to unravel the phytochemical composition of distinct constituents within J. acutus, specifically leaves (JALE) and roots (JARE), originating from the indigenous expanse of the Nador region in northeastern Morocco. The extraction of plant constituents was executed utilizing an ethanol-based extraction protocol. The subsequent elucidation of chemical constituents embedded within the extracts was accomplished employing analytical techniques based on high-performance liquid chromatography (HPLC). For the purpose of in vitro antioxidant evaluation, a dual approach was adopted, encompassing the radical scavenging technique employing 2,2-diphenyl-1-picrylhydrazyl (DPPH) and the total antioxidant capacity (TAC) assay. The acquired empirical data showcase substantial radical scavenging efficacy and pronounced relative antioxidant activity. Specifically, the DPPH and TAC methods yielded values of 483.45 ± 4.07 µg/mL and 54.59 ± 2.44 µg of ascorbic acid (AA)/mL, respectively, for the leaf extracts. Correspondingly, the root extracts demonstrated values of 297.03 ± 43.3 µg/mL and 65.615 ± 0.54 µg of AA/mL for the DPPH and TAC methods. In the realm of antimicrobial evaluation, the assessment of effects was undertaken through the agar well diffusion technique. The minimum inhibitory concentration, minimum bactericidal concentration, and minimum fungicidal concentration were determined for each extract. The inhibitory influence of the ethanol extracts was observed across bacterial strains including Staphylococcus aureus, Micrococcus luteus, and Pseudomonas aeruginosa, with the notable exception of Escherichia coli. However, fungal strains such as Candida glabrata and Rhodotorula glutinis exhibited comparatively lower resistance, whereas Aspergillus niger and Penicillium digitatum exhibited heightened resistance, evincing negligible antifungal activity. An anticipatory computational assessment of pharmacokinetic parameters was conducted, complemented by the application of the Pro-tox II web tool to delineate the potential toxicity profile of compounds intrinsic to the studied extracts. The culmination of these endeavors underpins the conceivable prospects of the investigated extracts as promising candidates for oral medicinal applications.

2.
Plants (Basel) ; 11(14)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35890486

RESUMEN

A wide range of biological properties and a potent therapeutic and prophylactic effect on chronic diseases are all present in Argania spinosa L. press cake. The aim of this research is to valorize the anticrystallization properties against calcium oxalate crystals of Argania spinosa L. press cake fractions and identify its bioactive components. Chemical species identification was performed using GC-MS analysis. The turbidimetric model was used to investigate crystallization inhibition in vitro. Infrared spectroscopy technique was used to characterize the synthesized crystals. Furthermore, both DPPH and FRAP methods were used to assess antioxidant activity. The results show that the fractions are equally important in crystallization inhibition percentages of calcium oxalate crystals. For saponin and polyphenol fractions, the inhibition percentages are in the orders of 83.49% and 82.83%, respectively. The results of the antioxidant activity by DPPH method show that the two fractions are equally important in the elimination of free radicals; the inhibition percentages were 77.87 ± 4.21 and 89.92 ± 1.39 for both polyphenols and saponins, respectively. FRAP method showed that the absorbance increases proportionally with concentration, and the absorbance are almost similar for both fractions and reach maximum values in the orders of 0.52 ± 0.07 and 0.42 ± 0.03, respectively, for saponins and polyphenols. These findings demonstrate that both fractions are rich in bioactive chemicals and have an anticrystallization capacity, allowing them to be employed for the curative and prophylactic effects against urolithiasis.

3.
J Anal Methods Chem ; 2020: 9598606, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32774985

RESUMEN

Matrix solid phase dispersion (MSPD) trailed by HPLC is a quick and fruitful technique utilized for fortitude of flavonoids such as Catechin, Kaempferol, Quercetin, and Rutin existing in P. acacia. The trial parameters that influenced the extraction potential (comprising the mass ratio of sample to the dispersant, nature of dispersant, and the nature of elution solvent and its volume) were examined and optimized. These MSPD optimized parameters regulated are as follows: 8 mL of methanol was utilized as elution solvent, silica gel/sample mass ration was selected to be 2 : 1, and dispersing sorbent was silica gel. The technique retrievals were regulated to be "from 96.87 to 100.54%" and the RSDs from 1.24 to 4.45%. The product of extract obtained by MSPD method was larger than that of other methods, i.e., sonication extraction or traditional reflux with lessened necessities on time, sample, and solvent.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA