Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1289653, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38978616

RESUMEN

Background: Type 1 (T1D) and type 2 (T2D) diabetes lead to an aberrant metabolism of sialoglycoconjugates and elevated free serum sialic acid (FSSA) level. The present study evaluated sialidase and sialyltranferase activities in serum and some organs relevant to diabetes at early and late stages of T1D and T2D. Methods: Sialic acid level with sialidase and sialyltransferase activities were monitored in the serum, liver, pancreas, skeletal muscle and kidney of diabetic animals at early and late stages of the diseases. Results: The FSSA and activity of sialidase in the serum were significantly increased at late stage of both T1D and T2D while sialic acid level in the liver was significantly decreased in the early and late stages of T1D and T2D, respectively. Furthermore, the activity of sialidase was significantly elevated in most of the diabetes-relevant organs while the activity of sialyltransferase remained largely unchanged. A multiple regression analysis revealed the contribution of the liver to the FSSA while pancreas and kidney contributed to the activity of sialidase in the serum. Conclusions: We concluded that the release of hepatic sialic acid in addition to pancreatic and renal sialidase might (in)directly contribute to the increased FSSA during both types of diabetes mellitus.


Asunto(s)
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Diabetes Mellitus Tipo 2 , Ácido N-Acetilneuramínico , Neuraminidasa , Sialiltransferasas , Animales , Neuraminidasa/metabolismo , Sialiltransferasas/metabolismo , Ácido N-Acetilneuramínico/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Ratas , Masculino , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/sangre , Hígado/metabolismo , Hígado/enzimología , Ratas Wistar , Páncreas/metabolismo , Páncreas/enzimología , Riñón/metabolismo , Músculo Esquelético/metabolismo
2.
Glycobiology ; 34(9)2024 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-39041707

RESUMEN

Modulation of sialic acids is one of the important pathological consequences of both type 1 and type 2 diabetes mellitus with or without the micro- and macrovascular complications. However, the mechanistic, therapeutic and/or diagnostic implications of these observations are uncoordinated and possibly conflicting. This review critically analyses the scientific investigations connecting sialic acids with diabetes mellitus. Generally, variations in the levels and patterns of sialylation, fucosylation and galactosylation were predominant across various tissues and body systems of diabetic patients, but the immune system seemed to be most affected. These might be explored as a basis for differential diagnosis of various diabetic complications. Sialic acids are predominantly elevated in nearly all forms of diabetic conditions, particularly nephropathy and retinopathy, which suggests some diagnostic value but the mechanistic details were not unequivocal from the available data. The plausible mechanistic explanations for the elevated sialic acids are increased desialylation by sialidases, stimulation of hexosamine pathway and synthesis of acute phase proteins as well as oxidative stress. Additionally, sialic acids are also profoundly associated with glucose transport and insulin resistance in human-based studies while animal-based studies revealed that the increased desialylation of insulin receptors by sialidases, especially NEU1, might be the causal link. Interestingly, inhibition of the diabetes-associated NEU1 desialylation was beneficial in diabetes management and might be considered as a therapeutic target. It is hoped that the article will provide an informed basis for future research activities on the exploitation of sialic acids and glycobiology for therapeutic and/or diagnostic purposes against diabetes mellitus.


Asunto(s)
Ácidos Siálicos , Humanos , Ácidos Siálicos/metabolismo , Animales , Diabetes Mellitus/metabolismo , Diabetes Mellitus/diagnóstico , Diabetes Mellitus/terapia , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/diagnóstico
3.
Comput Biol Med ; 175: 108491, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38657467

RESUMEN

Insomnia, a widespread public health issue, is associated with substantial distress and daytime functionality impairments and can predispose to depression and cardiovascular disease. Cognitive Behavioral Anti-insomnia therapies including benzodiazepines often face limitations due to patient adherence or potential adverse effects. This study focused on identifying novel bioactive compounds from medicinal plants, aiming to discover and develop new therapeutic agents with low risk-to-benefit ratios using computational drug discovery methods. Through a systematic framework involving compound library preparation, evaluation of drug-likeness and pharmacokinetics, toxicity prediction, molecular docking, and molecular dynamic simulations, two natural compounds such as 2-(4-hydroxy-3-methoxyphenyl)-8-methoxy-6-prop-2-enyl-3,4-dihydro-2H-chromen-3-ol from Ocimum tenuiflorum and 7-(2-hydroxypropan-2-yl)-1,4a-dimethyl-9-oxo-3,4,10,10a-tetrahydro-2H-phenanthrene-1-carboxylic acid from Poria cocos exhibited high binding affinity with orexin receptor type 1 (OX1R) and type 2 (OX2R), surpassing commercial drugs used in insomnia treatment. Additionally, they showed interactions with critical amino acid residues within the receptors that play crucial roles in competitive inhibitor activity, like commercial drugs such as Suvorexant, Lemborexant, and Daridorexant. Further, molecular dynamics simulations of the protein-ligand complexes under conditions that mimic the in vivo environment revealed both compounds' sustained and robust interactions with the OX1R and OX2R, reinforcing their potential as effective therapeutic candidates. Furthermore, upon evaluating both compounds' drug-likeness, pharmacokinetics, and toxicity profiles, it was discerned that they displayed considerable drug-like properties and favorable pharmacokinetics, along with diminished toxicity. The research provides a solid foundation for further exploring and validating these compounds as potential anti-insomnia therapeutics.


Asunto(s)
Simulación del Acoplamiento Molecular , Ocimum , Trastornos del Inicio y del Mantenimiento del Sueño , Trastornos del Inicio y del Mantenimiento del Sueño/tratamiento farmacológico , Humanos , Ocimum/química , Simulación de Dinámica Molecular , Extractos Vegetales/química , Extractos Vegetales/uso terapéutico
4.
Acta Parasitol ; 69(1): 384-395, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38147296

RESUMEN

PURPOSE: African Animal Trypanosomosis (AAT) caused by Trypanosoma congolense is a parasitic disease affecting the livestock industry in sub-Saharan Africa and usually results in severe anemia, organ damage, and ultimately the death of the infected host. The present study was designed to investigate the possible chemotherapeutic effect of eugenol on T. congolense infections and its inhibitory effect on the trans-sialidase (TconTS) gene expression. METHODS: Animals were infected with T. congolense and treated with 15 and 30 mg/kg body weight (BW) of eugenol for ten (10) days. RESULTS: The eugenol (15 mg/kg BW) significantly (P < 0.05) reduced the T. congolense proliferation, increased animal survival, and reduced serum urea level. However, both dosages of eugenol significantly (P < 0.05) ameliorated T. congolense-induced anemia, renal hypertrophy, splenomegaly, and reduced total damage score in the liver and kidney of infected animals. In addition, the compound significantly (P < 0.05) downregulated the expression levels of TconTS1, TconTS2, TconTS3, and TconTS4 but the effect was more pronounced (sevenfold reduction) on TconTS1. CONCLUSIONS: The oral administration of eugenol suppressed T. congolense proliferation and prevented some major pathologies associated with trypanosomiasis infection. The reversal of renal hypertrophy and splenomegaly by the compound in addition to the reduction in the expression level of the TconTS gene variants could explain the observed anemia ameliorative potential of the compound.


Asunto(s)
Anemia , Eugenol , Glicoproteínas , Neuraminidasa , Trypanosoma congolense , Tripanosomiasis Africana , Eugenol/farmacología , Trypanosoma congolense/efectos de los fármacos , Trypanosoma congolense/genética , Trypanosoma congolense/enzimología , Animales , Anemia/parasitología , Anemia/tratamiento farmacológico , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Tripanosomiasis Africana/veterinaria , Glicoproteínas/genética , Neuraminidasa/genética , Tripanocidas/farmacología , Tripanocidas/uso terapéutico
5.
Int J Food Sci ; 2023: 2553197, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38045104

RESUMEN

The Fynbos biome, Western Cape Province, South Africa, produces a unique honey from Apis mellifera capensis. The bioactivity of Fynbos (FB1-FB6) honeys and Manuka, unique manuka factor 15+ (MAN UMF15+) honey subjected to simulated in vitro digestion, was compared. The effect of each phase of digestion on the antioxidant properties and nitric oxide- (NO-) associated immunomodulatory effects was determined. The total phenolic content of MAN (UMF15+) was higher than that of FB honeys, and following digestion, the percentage bioaccessibility (BA) was 68.6% and 87.1 ± 27.0%, respectively. With the Trolox equivalent antioxidant capacity assay, the activity of FB1 and FB6 was similar to MAN (UMF15+) but reduced for FB2, FB3, FB4, and FB5 with a %BA of 77.9% for MAN (UMF15+) and 78.2 ± 13.4% for FB. The oxygen radical absorbance capacity of MAN (UMF15+) and FB honeys was similar and unaltered with digestion. In a cellular environment, using colon adenocarcinoma (Caco-2) cells, both undigested and the gastric digested honey reduced 2,2'-azobis-(2-amidinopropane) dihydrochloride- (AAPH-) mediated peroxyl radical formation. In contrast, following gastroduodenal digestion, the formation of reactive oxygen species (ROS) was increased. In murine macrophage (RAW 264.7) cells, all honeys induced different levels of NO which was significantly increased with digestion for MAN (UMF15+) and FB1. In LPS/IFN-γ stimulated RAW 264.7 macrophages, only undigested MAN (UMF15+) effectively reduced NO levels, and with digestion, NO scavenging activity of MAN (UMF15+) was reduced but increased for FB5 and FB6. In a noncellular environment, MAN (UMF15+), FB1, FB2, and FB6 scavenged NO, and with digestion, this activity was maintained. This study has identified that undigested and gastric-digested FB honey has antioxidant properties with strong potential anticancer effects following gastroduodenal digestion, related to ROS formation. MAN (UMF15+) had anti-inflammatory effects which were lost postdigestion, and in contrast, FB5 and FB6 had anti-inflammatory effects postdigestion.

6.
Parasitol Res ; 122(12): 2751-2772, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37851179

RESUMEN

Schistosomiasis is a neglected tropical disease caused by a parasitic, trematode blood fluke of the genus Schistosoma. With 20 million people infected, mostly due to Schistosoma haematobium, Nigeria has the highest burden of schistosomiasis in the world. We review the status of human schistosomiasis in Nigeria regarding its distribution, prevalence, diagnosis, prevention, orthodox and traditional treatments, as well as snail control strategies. Of the country's 36 states, the highest disease prevalence is found in Lagos State, but at a geo-political zonal level, the northwest is the most endemic. The predominantly used diagnostic techniques are based on microscopy. Other methods such as antibody-based serological assays and DNA detection methods are rarely employed. Possible biomarkers of disease have been identified in fecal and blood samples from patients. With respect to preventive chemotherapy, mass drug administration with praziquantel as well as individual studies with artemisinin or albendazole have been reported in 11 out of the 36 states with cure rates between 51.1 and 100%. Also, Nigerian medicinal plants have been traditionally used as anti-schistosomal agents or molluscicides, of which Tetrapleura tetraptera (Oshosho, aridan, Aidan fruit), Carica papaya (Gwanda, Ìbépe, Pawpaw), Borreria verticillata (Karya garma, Irawo-ile, African borreria), and Calliandra portoricensis (Tude, Oga, corpse awakener) are most common in the scientific literature. We conclude that the high endemicity of the disease in Nigeria is associated with the limited application of various diagnostic tools and preventive chemotherapy efforts as well as poor knowledge, attitudes, and practices (KAP). Nonetheless, the country could serve as a scientific base in the discovery of biomarkers, as well as novel plant-derived schistosomicides and molluscicides.


Asunto(s)
Plantas Medicinales , Esquistosomiasis Urinaria , Esquistosomiasis , Animales , Humanos , Nigeria/epidemiología , Esquistosomiasis/diagnóstico , Esquistosomiasis/tratamiento farmacológico , Esquistosomiasis/epidemiología , Schistosoma haematobium , Extractos Vegetales , Biomarcadores , Esquistosomiasis Urinaria/parasitología
7.
Front Microbiol ; 14: 1282257, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37886075

RESUMEN

Background: African animal trypanosomiasis hinders sustainable livestock productivity in sub-Saharan Africa. About 17 million infected cattle are treated with trypanocides annually but most of the drugs are associated with drawbacks, necessitating the search for a promising chemotherapeutic agent. Objectives: In this study, the effects of ß-sitosterol on Trypanosoma congolense infection were investigated along with its effect on the trans-sialidase gene expressions. Results: Oral treatment with ß-sitosterol at 15 and 30 mg/kg body weight (BW) for 14 days significantly (p < 0.05) reduced parasitemia and ameliorated the parasite-induced anemia. Also, the parasite-induced increase in serum urea level and renal histopathological damage scores in addition to renal hypertrophy was significantly (p < 0.05) reverted following treatment with 30 mg/kg BW ß-sitosterol. The compound also significantly (p < 0.05) down-regulated the expression of TconTS1 but not TconTS2, TconTS3, and TconTS4. Correlation analysis between free serum sialic acid with the TconTS1 and TconTS2 gene variants revealed negative correlations in the ß-sitosterol-treated groups although they were non-significant (p > 0.05) in the group treated with 15 mg/kg BW ß-sitosterol. Similarly, a non-significant negative (p > 0.05) correlation between the biomolecule and the TconTS3 and TconTS4 gene variants was observed in the ß-sitosterol-treated groups while positive correlations were observed in the infected untreated control group. Conclusion: The observed effect of ß-sitosterol on T. congolense infection could make the compound a possible template for the design of novel trypanocides.

8.
Front Pharmacol ; 14: 1221486, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37593171

RESUMEN

Herein, we explored the protective effect of Leonotis ocymifolia (Burm.f.) Iwarsson aerial parts extract (LO) against cisplatin (CP)-induced nephrotoxicity in rats and profiled their phytocontents. A total of 31 compounds belonging to organic and phenolic acids and their glycosides as well as flavonoids and their O- and C-glycosides were identified through LC-MS/MS. The DPPH and FRAP assays revealed that the extract had powerful antioxidant properties. The in vivo results demonstrated that administering LO extract for 30 days (40 and 80 mg/kg b. w.) significantly improved the altered renal injury markers via reducing creatinine (high dose only) and uric acid levels compared to the Cp-group. The deleterious action of cisplatin on renal oxidative stress markers (GSH, MDA, SOD, and CAT) were also mitigated by LO-pretreatment. The reduction of the inflammatory marker (IL-6), and inhibition of DNA fragmentation, highlighted the prophylactic action of LO in kidney tissue. Molecular docking followed by a 100 ns molecular dynamic simulation analyses revealed that, amongst the 31 identified compounds in LO, chlorogenic and caffeoylmalic acids had the most stable binding to IL-6. The nephroprotective effects were further confirmed by histopathological observations, which showed improvement in ultrastructural changes induced by cisplatin. The observed findings reinforce the conclusion that L. ocymifolia extract exerts nephroprotective properties, which could be related to its antioxidant and anti-inflammatory activities. Further studies are required to determine the therapeutic doses and the proper administration time.

9.
Chem Biol Drug Des ; 101(6): 1241-1251, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36869438

RESUMEN

Malaria remains a threat to global public health and the available antimalarial drugs are undermined by side effects and parasite resistance, suggesting an emphasis on new potential targets. Among the novel targets, Plasmodium falciparum autophagy-related proteins (PfAtg) remain a priority. In this paper, we reviewed the existing knowledge on the functions and structural biology of PfAtg including the compounds with inhibitory activity toward P. falciparum Atg8-Atg3 protein-protein interaction (PfAtg8-PfAtg3 PPI). A total of five PfAtg (PfAtg5, PfAtg8, PfAtg12, PfAtg18, and Rab7) were observed to have autophagic and/or non-autophagic roles. Available data showed that PfAtg8 has conserved hydrophobic pockets, which allows it to interact with PfAtg3 to form PfAtg8-PfAtg3 PPI. Additionally, 2-bromo-N-(4-pyridin-2-yl-1,3-thiazol-2-yl) benzamide was identified as the most powerful inhibitor of PfAtg8-PfAtg3 PPI. Due to the dearth of knowledge in this field, we hope that the article would open an avenue to further research on the remaining PfAtg as possible drug candidates.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Antimaláricos/química , Proteínas Relacionadas con la Autofagia/metabolismo , Proteínas Relacionadas con la Autofagia/farmacología , Plasmodium falciparum , Proteínas Protozoarias/metabolismo , Biología
10.
J Biomol Struct Dyn ; 41(1): 45-54, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-34812693

RESUMEN

African trypanosomiasis is caused by Trypanosoma brucei subspecies and available drugs against it, are unsatisfactory due to poor pharmacokinetic properties. Trypanosomal Alternative Oxidase (TAO) is an attractive target for anti-trypanosome rational drug discovery because it is essential for parasite-specific ATP generation and absent in the mammalian host. In this study, 360 filtered ligands from the Universal Natural Product Database were virtually screened and docked on T. brucei brucei TAO (PDB-ID 3VVA). From the virtual screening, 10 ligands with binding energy from -10.6 to -9.0 kcal/mol were selected as hits and further subjected pharmacokinetic and toxicity analyses where all of them passed Lipinski's rule of five. Also, the compounds were non-mutagenic, non-tumorigenic and could cross the blood brain barrier. The two topmost hits (UNPD29179; megacerotonic acid and UNPD41551; a quinazoline derivative) interacted with `four glutamates (Glu123, Glu162, Glu213 and Glu266) close to di-iron (2 iron elements) at the catalytic site of the enzyme. Subsequently, 100 ns MD simulations of the two topmost hits were performed using GROMACS where high RMSD values of 0.75 nm (TAO-UNPD29179) and 0.52 nm (TAO- UNPD41551), low residues fluctuations and consistent values of radius of gyration were observed. Moreover, Solvent Accessible Surface Area showed a consistent value of 160 nm2 for both complexes while TAO-UNPD29179 had higher number of hydrogen bonds than the TAO-UNPD41551. Similarly, MM/PBSA calculations indicated that UNPD29179 had higher free binding energy with TAO than UNPD41551. The data suggest that megacerotonic acid and a quinazoline derivative could be potential inhibitors of TAO with improved pharmacokinetic properties.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Trypanosoma brucei brucei/metabolismo , Simulación del Acoplamiento Molecular , Tripanosomiasis Africana/tratamiento farmacológico , Simulación de Dinámica Molecular , Mamíferos
11.
Chem Biodivers ; 20(2): e202200909, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36565063

RESUMEN

The dipeptidyl peptidase-IV (DPP-IV) inhibitory activity of Khaya senegalensis extracts was evaluated. The DPP-IV from a rat kidney was purified to a purification fold of 2.3. Among extracts from K. senegalensis, the hexane extract had the best DPP-IV inhibitory activity, with IC50 value of 1.56±0.61 µg/mL and was fractionated to eleven fractions (A-K). Fraction I had the best DPP-IV inhibition via uncompetitive pattern. GC-MS analysis of fraction I showed that the major bioactive compounds were 3-amino-3-hydroxyimino-N-phenylpropanamide (1) and 11-(2-cyclopenten-1-yl)undecanoic acid (2), with good binding affinities toward DPP-IV, based on molecular docking,. They were then subjected to molecular dynamic simulation using WEBGRO and utilizing a GROMACS system for 100 ns. The 3-amino-3-hydroxyimino-N-phenylpropanamide-DPP-IV complex was more stable and compact than the other complex. K. senegalensis contains compounds like 1 that might be used for the design of new DPP-IV inhibitors.


Asunto(s)
Inhibidores de la Dipeptidil-Peptidasa IV , Simulación de Dinámica Molecular , Simulación del Acoplamiento Molecular , Inhibidores de la Dipeptidil-Peptidasa IV/química , Inhibidores de la Dipeptidil-Peptidasa IV/metabolismo , Inhibidores de la Dipeptidil-Peptidasa IV/farmacología
12.
J Biomol Struct Dyn ; 41(19): 9938-9956, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-36416609

RESUMEN

Klebsiella pneumoniae is one of the perturbing multidrug resistant (MDR) and ESKAPE pathogens contributing to the mounting morbidity, mortality and extended rate of hospitalization. Its virulence, often regulated by quorum sensing (QS) reinforces the need to explore alternative and prospective antivirulence agents, relatively from plants secondary metabolites. Computer aided drug discovery using molecular modelling techniques offers advantage to investigate prospective drugs to combat MDR pathogens. Thus, this study employed virtual screening of selected terpenes and flavonoids from medicinal plants to interrupt the QS associated SdiA protein in K. pneumoniae to attenuate its virulence. 4LFU was used as a template to model the structure of SdiA. ProCheck, Verify3D, Ramachandran plot scores, and ProSA-Web all attested to the model's good quality. Since SdiA protein in K. pneumoniae leads to the expression of virulence, 31 prospective bioactive compounds were docked for antagonistic potential. The stability of the protein-ligand complex, atomic motions and inter-atomic interactions were further investigated through molecular dynamics simulations (MDS) at 100 ns production runs. The binding free energy was estimated using the molecular mechanics/poisson-boltzmann surface area (MM/PB-SA). Furthermore, the drug-likeness properties of the studied compounds were validated. Docking studies showed phytol possesses the highest binding affinity (-9.205 kcal/mol) while glycitein had -9.752 kcal/mol highest docking score. The MDS of the protein in complex with the best-docked compounds revealed phytol with the highest binding energy of -44.2625 kcal/mol, a low root-mean-square deviation (RMSD) value of 1.54 Å and root-mean-square fluctuation (RMSF) score of 1.78 Å. Analysis of the drug-likeness properties prediction and bioavailability of these compounds revealed their conformed activity to lipinski's rules with bioavailability scores of 0.55 F. The studied terpenes and flavonoids compounds effectively thwart SdiA protein, therefore regulate inter- or intra cellular communication and associated in virulence Enterobacteriaceae, serving as prospective antivirulence drugs.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Flavonoides , Klebsiella pneumoniae , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Virulencia , Simulación de Dinámica Molecular , Fitol
13.
Mol Divers ; 27(4): 1645-1660, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36042119

RESUMEN

The involvement of Trypanosoma congolense sialidase alongside phospholipase A2 has been widely accepted as the major contributing factor to anemia during African animal trypanosomiasis. The enzymes aid the parasite in scavenging sialic acid and fatty acids necessary for survival in the infected host, but there are no specific drug candidates against the two enzymes. This study investigated the inhibitory effects of ß-sitosterol on the partially purified T. congolense sialidase and phospholipase A2. Purification of the enzymes using DEAE cellulose column led to fractions with highest specific activities of 8016.41 and 39.26 µmol/min/mg for sialidase and phospholipase A2, respectively. Inhibition kinetics studies showed that ß-sitosterol is non-competitive and an uncompetitive inhibitor of sialidase and phospholipase A2 with inhibition binding constants of 0.368 and 0.549 µM, respectively. Molecular docking of the compound revealed binding energies of - 8.0 and - 8.6 kcal/mol against the sialidase and phospholipase A2, respectively. Furthermore, 100 ns molecular dynamics simulation using GROMACS revealed stable interaction of ß-sitosterol with both enzymes. Hydrogen bond interactions between the ligand and Glu284 and Leu102 residues of the sialidase and phospholipase A2, respectively, were found to be the major stabilizing forces. In conclusion, ß-sitosterol could serve as a dual inhibitor of T. congolense sialidase and phospholipase A2; hence, the compound could be exploited further in the search for newer trypanocides.


Asunto(s)
Trypanosoma congolense , Tripanosomiasis Africana , Animales , Simulación de Dinámica Molecular , Neuraminidasa/química , Trypanosoma congolense/metabolismo , Simulación del Acoplamiento Molecular , Cinética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/veterinaria , Fosfolipasas/metabolismo , Fosfolipasas/farmacología
14.
Front Mol Biosci ; 10: 1331059, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38250734

RESUMEN

The phytoconstituents of the aqueous extract from Syzygium jambos L. (Alston) leaves were defined using HPLC-PDA-MS/MS and the antioxidant, anti-aging, antibacterial, and anti-biofilm activities of the extract were in silico and in vitro investigated. The antioxidant activities were performed using in vitro DPPH and FRAP assays as well as H2-DCFDA assay in HaCaT cells in which oxidative stress was induced by UVA radiation. Anti-aging activity was tested in vitro, using aging-related enzymes. The antibacterial, anti-biofilm and inhibitory effects on bacterial mobilities (swarming and swimming) were assessed against Pseudomonas aeruginosa. Results showed that S. jambos aqueous extract contained 28 phytochemicals belonging to different metabolite classes, mainly phenolic acids, gallic acid derivatives, flavonoids, and ellagitannins. Mineral content analysis showed that S. jambos leaves contained moderate amounts of nitrogen, potassium, manganese, magnesium, and zinc, relatively low amounts of phosphorus and copper, and high concentration of calcium and iron. The extract displayed strong antioxidant activities in vitro and inhibited UVA-induced oxidative stress in HaCaT cells. Docking the major compounds identified in the extract into the four main protein targets involved in skin aging revealed an appreciable inhibitory potential of these compounds against tyrosinase, elastase, hyaluronidase, and collagenase enzymes. Moreover, molecular dynamic simulations were adopted to confirm the binding affinity of some selected compounds towards the target enzymes. The extract exhibited pronounced in vitro anti-aging effects, compared to kojic acid and quercetin (the reference compounds). It also inhibited the growth of P. aeruginosa, counteracted its ability to form biofilm, and impeded its swarming and swimming mobilities. Altogether, these findings strongly propose S. jambos leaves as a promising source of bioactive metabolites for the development of natural cosmeceutical and dermatological agents.

15.
Pharmacol Res ; 179: 106158, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35272043

RESUMEN

Diterpenes are a diverse group of structurally complex natural products with a wide spectrum of biological activities, including antidiabetic potential. In the last 25 years, numerous diterpenes have been investigated for antidiabetic activity, with some of them reaching the stage of clinical trials. However, these studies have not been comprehensively reviewed in any previous publication. Herein, we critically discussed the literature on the potential of diterpenes as antidiabetic agents, published from 1995 to September, 2021. In the period under review, 427 diterpenes were reported to have varying degrees of antidiabetic activity. Steviol glycosides, stevioside (1) and rebaudioside A (2), were the most investigated diterpenes with promising antidiabetic property using in vitro and in vivo models, as well as human subjects. All the tested pimaranes consistently showed good activity in preclinical evaluations against diabetes. Inhibitions of α-glucosidase and protein tyrosine phosphatase 1B (PTP 1B) activities and peroxisome proliferator-activated receptors gamma (PPAR-γ) agonistic property, were the most frequently used models for studying the antidiabetic activity of diterpenes. The molecular mechanisms of action of the diterpenes include increased GLUT4 translocation, and activation of phosphoinositide 3-kinase (PI3K) and AMP-activated protein kinase (AMPK)-dependent signaling pathways. This review revealed that diterpenes hold promising antidiabetic potential while stevioside (1) and rebaudioside A (2) are the only diterpenes that were advanced to the clinical trial stage of the drug discovery pipeline. Diterpenes belonging to the abietane, labdane, pimarane and kaurane classes have shown promising activity in in vitro and in vivo models of diabetes and should be further investigated.


Asunto(s)
Diabetes Mellitus , Diterpenos de Tipo Kaurano , Diterpenos , Proteínas Quinasas Activadas por AMP , Diabetes Mellitus/tratamiento farmacológico , Diterpenos/farmacología , Diterpenos/uso terapéutico , Diterpenos de Tipo Kaurano/farmacología , Diterpenos de Tipo Kaurano/uso terapéutico , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Fosfatidilinositol 3-Quinasas
16.
Chem Biol Drug Des ; 99(6): 908-922, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35353953

RESUMEN

Trypanosoma congolense is a pathogenic African animal trypanosome species causing devastating conditions leading to death of an infected host. The drawbacks of the existing trypanocidal drugs have led to the search for new drug candidates. In this study, ß-ionone at 15 and 30 mg/kg body weight (BW) was orally administered to T. congolense infected rats for 14 days followed by an assessment of anemia, organ damages, and the expression of T. congolense trans-sialidase gene variants. A significant decrease in parasitemia (p < .05) was observed in the animals treated with 15 mg/kg BW ß-ionone besides increased animal survival rate. A trypanosome-induced decrease in packed cell volume (PCV) and histopathological changes across tissues was significantly (p < .05) ameliorated following treatment with both doses of ß-ionone. This is in addition to reversing the parasite-induced upsurge in free serum sialic acid (FSA) and expression of T. congolense trans-sialidase gene variants (TconTS1, TconTS3, and TconTS4). Correlation analysis revealed a positive correlation (p > .05) between FSA with the TconTS gene expressions. In addition, the compound inhibited partially purified T. congolense sialidase and phospholipase A2 via mixed inhibition pattern with inhibition binding constants of 25.325 and 4.550 µM, respectively, while molecular docking predicted binding energies of -5.6 kcal/mol for both enzymes. In conclusion, treatment with ß-ionone suppressed T. congolense proliferation and protected the animals against some of the parasite-induced pathologies whilst the effect on anemia development might be due to inhibition of sialidase and PLA2 activities as well as the expression levels of TconTS3 and TconTS4.


Asunto(s)
Anemia , Norisoprenoides , Trypanosoma congolense , Tripanosomiasis Africana , Anemia/tratamiento farmacológico , Anemia/parasitología , Animales , Proliferación Celular , Expresión Génica , Glicoproteínas , Simulación del Acoplamiento Molecular , Neuraminidasa , Norisoprenoides/farmacología , Fosfolipasas A2/genética , Ratas , Trypanosoma congolense/genética , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología
17.
J Biochem ; 171(6): 619-629, 2022 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-35191956

RESUMEN

Glycosylphosphatidylinositol-specific phospholipase C (GPI-PLC) of Trypanosoma brucei, the causative protozoan parasite of African trypanosomiasis, is a membrane-bound enzyme essential for antigenic variation, because it catalyses the release of the membrane-bound form of variable surface glycoproteins. Here, we performed a fragment-based drug discovery of TbGPI-PLC inhibitors using a combination of enzymatic inhibition assay and water ligand observed via gradient spectroscopy (WaterLOGSY) NMR experiment. The TbGPI-PLC was cloned and overexpressed using an Escherichia coli expression system followed by purification using three-phase partitioning and gel filtration. Subsequently, the inhibitory activity of 873 fragment compounds against the recombinant TbGPI-PLC led to the identification of 66 primary hits. These primary hits were subjected to the WaterLOGSY NMR experiment where 10 fragment hits were confirmed to directly bind to the TbGPI-PLC. These included benzothiazole, chlorobenzene, imidazole, indole, pyrazol and quinolinone derivatives. Molecular docking simulation indicated that six of them share a common binding site, which corresponds to the catalytic pocket. The present study identified chemically diverse fragment hits that could directly bind and inhibit the TbGPI-PLC activity, which constructed a framework for fragment optimization or linking towards the design of novel drugs for African trypanosomiasis.


Asunto(s)
Trypanosoma brucei brucei , Tripanosomiasis Africana , Animales , Descubrimiento de Drogas , Glicosilfosfatidilinositol Diacilglicerol-Liasa/metabolismo , Ligandos , Simulación del Acoplamiento Molecular , Análisis Espectral , Trypanosoma brucei brucei/metabolismo , Tripanosomiasis Africana/tratamiento farmacológico , Tripanosomiasis Africana/parasitología , Fosfolipasas de Tipo C/metabolismo , Agua
18.
Molecules ; 27(2)2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-35056785

RESUMEN

Sub-Saharan Africa is profoundly challenged with African Animal Trypanosomiasis and the available trypanocides are faced with drawbacks, necessitating the search for novel agents. Herein, the chemotherapeutic potential of phloroglucinol on T. congolense infection and its inhibitory effects on the partially purified T. congolense sialidase and phospholipase A2 (PLA2) were investigated. Treatment with phloroglucinol for 14 days significantly (p < 0.05) suppressed T. congolense proliferation, increased animal survival and ameliorated anemia induced by the parasite. Using biochemical and histopathological analyses, phloroglucinol was found to prevent renal damages and splenomegaly, besides its protection against T. congolense-associated increase in free serum sialic acids in infected animals. Moreover, the compound inhibited bloodstream T. congolense sialidase via mixed inhibition pattern with inhibition binding constant (Ki) of 0.181 µM, but a very low uncompetitive inhibitory effects against PLA2 (Ki > 9000 µM) was recorded. Molecular docking studies revealed binding energies of -4.9 and -5.3 kcal/mol between phloroglucinol with modeled sialidase and PLA2 respectively, while a 50 ns molecular dynamics simulation using GROMACS revealed the sialidase-phloroglucinol complex to be more compact and stable with higher free binding energy (-67.84 ± 0.50 kJ/mol) than PLA2-phloroglucinol complex (-77.17 ± 0.52 kJ/mol), based on MM-PBSA analysis. The sialidase-phloroglucinol complex had a single hydrogen bond interaction with Ser453 while none was observed for the PLA2-phloroglucinol complex. In conclusion, phloroglucinol showed moderate trypanostatic activity with great potential in ameliorating some of the parasite-induced pathologies and its anti-anemic effects might be linked to inhibition of sialidase rather than PLA2.


Asunto(s)
Floroglucinol/farmacología , Tripanocidas/farmacología , Trypanosoma congolense/efectos de los fármacos , Tripanosomiasis Africana/tratamiento farmacológico , Anemia/complicaciones , Anemia/tratamiento farmacológico , Animales , Femenino , Riñón/efectos de los fármacos , Riñón/parasitología , Riñón/patología , Hígado/efectos de los fármacos , Hígado/parasitología , Hígado/patología , Masculino , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Neuraminidasa/antagonistas & inhibidores , Neuraminidasa/química , Tamaño de los Órganos/efectos de los fármacos , Floroglucinol/química , Floroglucinol/uso terapéutico , Fosfolipasas A2/química , Fosfolipasas A2/metabolismo , Ratas Wistar , Análisis de Supervivencia , Tripanocidas/química , Tripanocidas/uso terapéutico , Trypanosoma congolense/parasitología , Tripanosomiasis Africana/sangre , Tripanosomiasis Africana/complicaciones , Tripanosomiasis Africana/parasitología
19.
Acta Parasitol ; 67(2): 1010-1014, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35000113

RESUMEN

PURPOSE: Understanding some variations in specialized molecules during malaria could facilitate adequate monitoring of patients and reduce the fatalities caused by the disease. The present study reports changes in the levels of free serum sialic acid (FSSA) among Plasmodium-infected individuals in Zaria, Nigeria, in a cross-sectional study with 170 individuals. METHODS: The FSSA and total sialic acid (TSA) in the blood were determined using the thiobarbituric acid method and the white blood cells (WBC) count, haemoglobin concentration and packed cell volumes were assessed using an automated haematological analyser. RESULTS: The results showed that, in the patients aged > 5 years the level of TSA was significantly elevated (P < 0.05) compared to apparently healthy age-matched controls whereas TSA was slightly lower in patients aged < 5 years compared to controls. The ratio of FSSA to TSA was not different between patients aged > 5 years compared to their age-matched controls whereas FSSA/TSA was significantly elevated (P < 0.05) in patients aged < 5 years compared to their aged-matched controls. The level of FSSA/TSA in the patients aged < 5 years was not correlated with parasite density, white blood cell count, haemoglobin concentration or packed cell volume. CONCLUSION: We concluded that, metabolism and/or physiology of serum sialo-glycoconjugates is affected by malaria and FSSA is mainly elevated in children < 5 years of age but not among older patients suggesting the possible usefulness of FSSA in the analysis of uncomplicated malaria in under five children.


Asunto(s)
Malaria Falciparum , Malaria , Niño , Preescolar , Estudios Transversales , Hemoglobinas , Humanos , Malaria Falciparum/parasitología , Ácido N-Acetilneuramínico , Nigeria , Plasmodium falciparum
20.
Parasitol Res ; 121(2): 737-742, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35034199

RESUMEN

The search for a novel prophylactic agent against malaria is on the rise due to the negative socio-economic impact of the disease in tropical and subtropical regions of the world. Sequel to this, we evaluated the in vivo anti-Plasmodium berghei activity of a high-carbohydrate diet as well as the effects of the diet on parasite-associated anemia and organ damage. Mice were fed with either standard or a high-carbohydrate diet for 4 weeks and subsequently infected with chloroquine-sensitive strain of P. berghei. The levels of parasitemia, blood glucose, packed cell volume, and redox sensitive biomarkers of brain and liver tissues were measured. Data from this study showed that high-carbohydrate significantly (p < 0.05) aggravated the multiplication of P. berghei in the animals. Furthermore, our result demonstrated that blood glucose level in P. berghei-infected mice fed with a high-carbohydrate diet was insignificantly (p > 0.05) depleted. Additionally, our findings revealed that high-carbohydrate did not demonstrate a significant (p < 0.05) ameliorative potentials against P. berghei-induced anemia and oxidative stress in the brain and liver tissues. We concluded that high-carbohydrate diet was unable to suppress P. berghei upsurge and accordingly could not mitigate certain pathological alterations induced by P. berghei infection.


Asunto(s)
Antimaláricos , Malaria , Animales , Antimaláricos/farmacología , Carbohidratos/farmacología , Carbohidratos/uso terapéutico , Malaria/tratamiento farmacológico , Ratones , Estrés Oxidativo , Parasitemia/tratamiento farmacológico , Plasmodium berghei
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...