Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Asunto principal
Intervalo de año de publicación
2.
Front Microbiol ; 13: 1081815, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36762097

RESUMEN

Actinomycetota in the phylum of bacteria has been explored extensively as a source of antibiotics and secondary metabolites. In addition to acting as plant growth-promoting agents, they also possess the potential to control various plant pathogens; however, there are limited studies that report the facultative predatory ability of Actinomycetota spp. Furthermore, the mechanisms that underline predation are poorly understood. We assessed the diversity of strategies employed by predatory bacteria to attack and subsequently induce the cell lysing of their prey. We revisited the diversity and abundance of secondary metabolite molecules linked to the different predation strategies by bacteria species. We analyzed the pros and cons of the distinctive predation mechanisms and explored their potential for the development of new biocontrol agents. The facultative predatory behaviors diverge from group attack "wolfpack," cell-to-cell proximity "epibiotic," periplasmic penetration, and endobiotic invasion to degrade host-cellular content. The epibiotic represents the dominant facultative mode of predation, irrespective of the habitat origins. The wolfpack is the second-used approach among the Actinomycetota harboring predatory traits. The secondary molecules as chemical weapons engaged in the respective attacks were reviewed. We finally explored the use of predatory Actinomycetota as a new cost-effective and sustainable biocontrol agent against plant pathogens.

3.
Environ Sci Pollut Res Int ; 28(21): 26840-26848, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33501577

RESUMEN

The efficiency of the treatment of hospital wastewater by actinobacteria was investigated using two chemometric data analysis methods. Six strains of multi-resistant bacteria isolated from Marrakesh hospital wastewater and four strains of antagonistic actinobacteria isolated from Moroccan marine environment were characterized by fatty acids released as methyl esters by thermochemolysis-GC/MS. The hierarchical cluster analysis (HCA) and the principal component analysis (PCA) were used to correlate fatty acids (FA) distributions within strains. HCA allowed to discriminate between bacteria and actinobacteria. A lower Euclidean distance is noted for bacteria. With PCA, linear and branched-chained FAs correlated with bacteria whereas mono unsaturated FAs correlated more specifically with Gram (-) bacteria. Terminally branched-chained FAs correlated most likely with actinobacteria. A co-culture of actinobacteria and bacteria monitored during 15 days demonstrated the efficiency of the biological treatment for 2 of the 4 studied actinobacteria. The effect is more important on Gram-negative bacteria. Antagonistic actinobacteria seem to be poorly efficient against Gram-positive bacteria.


Asunto(s)
Actinobacteria , Antibacterianos/farmacología , Bacterias , Análisis de Datos , Hospitales , Marruecos , Aguas Residuales
4.
Antibiotics (Basel) ; 9(2)2020 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-32092889

RESUMEN

Predatory bacteria constitute a heterogeneous group of prokaryotes able to lyse and feed on the cellular constituents of other bacteria in conditions of nutrient scarcity. In this study, we describe the isolation of Actinobacteria predator of other bacteria from the marine water of the Moroccan Atlantic coast. Only 4 Actinobacteria isolates showing strong predation capability against native or multidrug-resistant Gram-positive or Gram-negative bacteria were identified among 142 isolated potential predatory bacteria. These actinobacterial predators were shown to belong to the Streptomyces genus and to inhibit the growth of various native or multidrug-resistant micro-organisms, including Micrococcus luteus, Staphylococcus aureus (native and methicillin-resistant), and Escherichia coli (native and ampicillin-resistant). Even if no clear correlation could be established between the antibacterial activities of the selected predator Actinobacteria and their predatory activity, we cannot exclude that some specific bio-active secondary metabolites were produced in this context and contributed to the killing and lysis of the bacteria. Indeed, the co-cultivation of Actinobacteria with other bacteria is known to lead to the production of compounds that are not produced in monoculture. Furthermore, the production of specific antibiotics is linked to the composition of the growth media that, in our co-culture conditions, exclusively consisted of the components of the prey living cells. Interestingly, our strategy led to the isolation of bacteria with interesting inhibitory activity against methicillin-resistant S. aureus (MRSA) as well as against Gram-negative bacteria.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...