Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6703, 2024 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509089

RESUMEN

The decline of the iconic monarch butterfly (Danaus plexippus) in North America has motivated research on the impacts of land use and land cover (LULC) change and climate variability on monarch habitat and population dynamics. We investigated spring and fall trends in LULC, milkweed and nectar resources over a 20-year period, and ~ 30 years of climate variables in Mexico and Texas, U.S. This region supports spring breeding, and spring and fall migration during the annual life cycle of the monarch. We estimated a - 2.9% decline in milkweed in Texas, but little to no change in Mexico. Fall and spring nectar resources declined < 1% in both study extents. Vegetation greenness increased in the fall and spring in Mexico while the other climate variables did not change in both Mexico and Texas. Monarch habitat in Mexico and Texas appears relatively more intact than in the midwestern, agricultural landscapes of the U.S. Given the relatively modest observed changes in nectar and milkweed, the relatively stable climate conditions, and increased vegetation greenness in Mexico, it seems unlikely that habitat loss (quantity or quality) in Mexico and Texas has caused large declines in population size or survival during migration.


Asunto(s)
Asclepias , Mariposas Diurnas , Animales , México , Texas , Néctar de las Plantas , Migración Animal , Fitomejoramiento , Ecosistema
2.
Biol Lett ; 19(1): 20220448, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36596464

RESUMEN

Urbanization creates novel ecosystems comprised of species assemblages and environments with no natural analogue. Moreover, irrigation can alter plant function compared to non-irrigated systems. However, the capacity of irrigation to alter functional trait patterns across multiple species is unknown but may be important for the dynamics of urban ecosystems. We evaluated the hypothesis that urban irrigation influences plasticity in functional traits by measuring carbon-gain and water-use traits of 30 tree species planted in Southern California, USA spanning a coastal-to-desert gradient. Tree species respond to irrigation through increasing the carbon-gain trait relationship of leaf nitrogen per specific leaf area compared to their native habitat. Moreover, most species shift to a water-use strategy of greater water loss through stomata when planted in irrigated desert-like environments compared to coastal environments, implying that irrigated species capitalize on increased water availability to cool their leaves in extreme heat and high evaporative demand conditions. Therefore, irrigated urban environments increase the plasticity of trait responses compared to native ecosystems, allowing for novel response to climatic variation. Our results indicate that trees grown in water-resource-rich urban ecosystems can alter their functional traits plasticity beyond those measured in native ecosystems, which can lead to plant trait dynamics with no natural analogue.


Asunto(s)
Ecosistema , Árboles , Ambiente , Carbono , Agua/fisiología , Hojas de la Planta
3.
Sci Total Environ ; 829: 154589, 2022 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-35306078

RESUMEN

Semi-arid urban environments are undergoing an increase in both average air temperatures and in the frequency and intensity of extreme heat events. Within cities, different composition and densities of urban landcovers (ULC) influence local air temperatures, either mitigating or increasing heat. Currently, understanding how combinations of ULC influence air temperature at the block to neighborhood scale is necessary for heat mitigation plans, and yet limited due to the complexities integrating high-resolution ULC with spatial and temporally high-resolution microclimate data. We quantify how ULC influences air temperature at 60 m resolution for day and nighttime climate normals and extreme heat conditions by integrating microclimate sensor data sensor and high-resolution (1 m2) ULC for Denver, Colorado's urban core. We derive ULC drivers of air temperature using a structural equation model, then use a random forest algorithm to predict air temperatures for 30-year climate normals and an extreme heat condition. We find that, in conjunction with other ULC, urban tree canopy reduces daytime air temperatures (-0.026 °C per % cover), and the combination of impervious surfaces and buildings increases daytime air temperature (0.021 °C per % cover). Compared to daytime hours, nighttime irrigated turf temperature cooling effects are increased from being non-significant to -0.022 °C per % cover, while tree canopy effects are reduced from -0.026 °C during the day to -0.016 °C at night. Overall, ULC drives ~17% and 25% of local air temperature during the day and night, respectively. ULC influence on daytime air temperatures is altered in extreme heat events, both depending on the ULC type and time of day. Our findings inform urban planners seeking to identify potential hot and cool spots within a semi-arid city and mitigate high urban air temperatures through using ULC within larger urban climate mitigation strategies.


Asunto(s)
Clima , Calor , Ciudades , Microclima , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA