Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Cancers (Basel) ; 16(14)2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-39061220

RESUMEN

INTRODUCTION: Decellularized extracellular matrix (ECM) bioscaffolds have emerged as a promising three-dimensional (3D) model, but so far there are no data concerning their use in radiobiological studies. MATERIAL AND METHODS: We seeded two well-known radioresistant cell lines (HMV-II and PANC-1) in decellularized porcine liver-derived scaffolds and irradiated them with both high- (Carbon Ions) and low- (Photons) Linear Energy Transfer (LET) radiation in order to test whether a natural 3D-bioscaffold might be a useful tool for radiobiological research and to achieve an evaluation that could be as near as possible to what happens in vivo. RESULTS: Biological scaffolds provided a favorable 3D environment for cell proliferation and expansion. Cells did not show signs of dedifferentiation and retained their distinct phenotype coherently with their anatomopathological and clinical behaviors. The radiobiological response to high LET was higher for HMV-II and PANC-1 compared to the low LET. In particular, Carbon Ions reduced the melanogenesis in HMV-II and induced more cytopathic effects and the substantial cell deterioration of both cell lines compared to photons. CONCLUSIONS: In addition to offering a suitable 3D model for radiobiological research and an appropriate setting for preclinical oncological analysis, we can attest that bioscaffolds seemed cost-effective due to their ease of use, low maintenance requirements, and lack of complex technology.

2.
Int J Pharm ; 656: 124119, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38621616

RESUMEN

Nowadays, chronic wounds are the major cause of morbidity worldwide and the healthcare costs related to wound care are a billion-dollar issue; chronic wounds involve a non-healing process that makes necessary the application of advanced wound dressings to promote skin integrity recovery. Functionally Graded Scaffolds (FGSs) are currently driving interest as promising candidates in mimicking the skin tissue environment and, thus, in enhancing a faster and more effective wound healing process. Aim of the present work was to design and develop a porous FGS based on κ-carrageenan (κCG) for the management of chronic skin wounds; a freeze-drying process was optimized to obtain in a single-step a three-layered FGS characterized by a pore size gradient functional to mimic the structure of native skin tissue. In addition to κCG, arginine and whey protein isolate were used as multifunctional agents for FGS preparation; these substances can not only intervene in some stages of wound healing but are able to establish non-covalent interactions with κCG, which were responsible for the production of layers with different pore size, water content capability and mechanical properties. Cell migration, adhesion and proliferation within the FGS structure were evaluated in vitro on fibroblasts and FGS wound healing potential was also studied in vivo on a murine model.


Asunto(s)
Carragenina , Fibroblastos , Liofilización , Cicatrización de Heridas , Liofilización/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Porosidad , Ratones , Carragenina/química , Fibroblastos/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Andamios del Tejido , Adhesión Celular , Masculino , Piel/metabolismo
3.
Int J Pharm ; 652: 123822, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38242257

RESUMEN

Tendon disorders are common injuries, which can be greatly debilitating as they are often accompanied by great pain and inflammation. Moreover, several problems are also related to the laceration of the tendon-to-bone interface (TBI), a specific region subjected to great mechanical stresses. The techniques used nowadays for the treatment of tendon and TBI injuries often involve surgery. However, one critical aspect of this procedure involves the elevated risk of fail due to the tissues weakening and the postoperative alterations of the normal joint mechanics. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with tunable elastic and mechanical properties, that could guarantee an effective support during the new tissue formation. Based on these premises, the aim of this work was the design and the development of highly porous 3D scaffolds based on thermoplastic polyurethane, and doped with chondroitin sulfate and caseinophosphopeptides, able to mimic the structural, biomechanical, and biochemical functions of the TBI. The obtained scaffolds were characterized by a homogeneous microporous structure, and by a porosity optimal for cell nutrition and migration. They were also characterized by remarkable mechanical properties, reaching values comparable to the ones of the native tendons. The scaffolds promoted the tenocyte adhesion and proliferation when caseinophosphopetides and chondroitin sulfate are present in the 3D structure. In particular, caseinophosphopeptides' optimal concentration for cell proliferation resulted 2.4 mg/mL. Finally, the systems evaluation in vivo demonstrated the scaffolds' safety, since they did not cause any inflammatory effect nor foreign body response, representing interesting platforms for the regeneration of injured TBI.


Asunto(s)
Sulfatos de Condroitina , Andamios del Tejido , Andamios del Tejido/química , Porosidad , Sulfatos de Condroitina/química , Poliuretanos/química , Ingeniería de Tejidos/métodos , Regeneración Ósea , Tendones
4.
Front Bioeng Biotechnol ; 11: 1225722, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37650039

RESUMEN

Introduction: Recently, mycelia of Ganoderma lucidum and Pleurotus ostreatus, edible fungi, have been characterized in vitro as self-growing biomaterials for tissue engineering since they are constituted of interconnected fibrous networks resembling the dermal collagen structure. Aim: This work aims to investigate the biopharmaceutical properties of G. lucidum and P. ostreatus mycelia to prove their safety and effectiveness in tissue engineering as dermal substitutes. Methods: The mycelial materials were characterized using a multidisciplinary approach, including physicochemical properties (morphology, thermal behavior, surface charge, and isoelectric point). Moreover, preclinical properties such as gene expression and in vitro wound healing assay have been evaluated using fibroblasts. Finally, these naturally-grown substrates were applied in vivo using a murine burn/excisional wound model. Conclusions: Both G. lucidum and P. ostreatus mycelia are biocompatible and able to safely and effectively enhance tissue repair in vivo in our preclinical model.

5.
ACS Appl Mater Interfaces ; 15(22): 26510-26524, 2023 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-37220144

RESUMEN

Tendon disorders are common medical conditions, which can be greatly debilitating as they are often accompanied by great pain and inflammation. The techniques used nowadays for the treatment of chronic tendon injuries often involve surgery. However, one critical aspect of this procedure involves the scar tissue, characterized by mechanical properties that vary from healthy tissue, rendering the tendons inclined to reinjury or rupture. Synthetic polymers, such as thermoplastic polyurethane, are of special interest in the tissue engineering field as they allow the production of scaffolds with controlled elastic and mechanical properties, which could guarantee an effective support during the new tissue formation. The aim of this work was the design and the development of tubular nanofibrous scaffolds based on thermoplastic polyurethane and enriched with cerium oxide nanoparticles and chondroitin sulfate. The scaffolds were characterized by remarkable mechanical properties, especially when tubular aligned, reaching values comparable to the ones of the native tendons. A weight loss test was performed, suggesting a degradation in prolonged times. In particular, the scaffolds maintained their morphology and also remarkable mechanical properties after 12 weeks of degradation. The scaffolds promoted the cell adhesion and proliferation, in particular when in aligned conformation. Finally, the systems in vivo did not cause any inflammatory effect, representing interesting platforms for the regeneration of injured tendons.


Asunto(s)
Sulfatos de Condroitina , Andamios del Tejido , Poliuretanos , Ingeniería de Tejidos/métodos , Tendones , Proliferación Celular
6.
Int J Pharm ; 640: 123015, 2023 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-37156308

RESUMEN

Periodontal regeneration is extremely limited and unpredictable due to structural complications, as it requires the simultaneous restoration of different tissues, including cementum, gingiva, bone, and periodontal ligament. In this work, spray-dried microparticles based on green materials (polysaccharides - gums - and a protein - silk fibroin) are proposed to be implanted in the periodontal pocket as 3D scaffolds during non-surgical treatments, to prevent the progression of periodontal disease and to promote the healing in mild periodontitis. Arabic or xanthan gum have been associated to silk fibroin, extracted from Bombyx mori cocoons, and loaded with lysozyme due to its antibacterial properties. The microparticles were prepared by spray-drying and cross-linked by water vapor annealing, inducing the amorphous to semi-crystalline transition of the protein component. The microparticles were characterized in terms of their chemico-physical features (SEM, size distribution, structural characterization - FTIR and SAXS, hydration and degradation properties) and preclinical properties (lysozyme release, antibacterial properties, mucoadhesion, in vitro cells adhesion and proliferation and in vivo safety on a murine incisional wound model). The encouraging preclinical results highlighted that these three-dimensional (3D) microparticles could provide a biocompatible platform able to prevent periodontitis progression and to promote the healing of soft tissues in mild periodontitis.


Asunto(s)
Bombyx , Fibroínas , Periodontitis , Ratones , Animales , Fibroínas/química , Muramidasa , Dispersión del Ángulo Pequeño , Difracción de Rayos X , Bombyx/metabolismo , Periodontitis/tratamiento farmacológico , Polisacáridos , Antibacterianos/farmacología , Andamios del Tejido/química , Materiales Biocompatibles/química , Ingeniería de Tejidos
7.
Int J Biol Macromol ; 242(Pt 3): 125000, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217043

RESUMEN

Herein we developed a hydrogel based porous cross-linked scaffold intended for the treatment of chronic skin ulcers. It is made of collagen, the most abundant protein of mammals ECM, and chitosan, a natural polysaccharide endowed with numerous positive cues for wound repair. Different cross-linking methods, namely UV irradiation with the addition of glucose, addition of tannic acid as cross-linking agent and ultrasonication, were employed to prepare a cross-linked hydrogel with a highly interconnected 3D internal structure. The variables considered critical to obtain a suitable system for the envisaged application are the composition of hydrogels, especially the concentration of chitosan, and the concentration ratio between chitosan and collagen. Stable systems, characterized by high porosity, were obtained thanks to the use of freeze-drying process. To assess the influence of the above-mentioned variables on scaffold mechanical properties, a Design of Experiments (DoE) approach was exploited, which resulted in the identification of the best hydrogel composition. In vitro and in vivo assays on a fibroblast model cell line and on a murine model, respectively, demonstrated scaffold biocompatibility, biomimicry, and safety.


Asunto(s)
Quitosano , Ratones , Animales , Quitosano/química , Porosidad , Andamios del Tejido/química , Colágeno/química , Hidrogeles/farmacología , Hidrogeles/química , Ingeniería de Tejidos/métodos , Mamíferos
8.
Biomacromolecules ; 24(4): 1731-1743, 2023 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-36922716

RESUMEN

Peripheral nerve injury is one of the most debilitating pathologies that severely impair patients' life. Although many efforts have been made to advance in the treatment of such a complex disorder, successful strategies to ensure full recovery are still scarce. The aim of the present work was to develop flexible and mechanically resistant platforms intended to act as a support and guide for neural cells during the regeneration process of peripheral nerve injury. For this purpose, poly(lactic-co-glycolic acid) (PLGA)/poly(d,l-lactic acid) (PDLLA)/poly(ethylene glycol) 400 (PEG)-multichannel-based scaffolds (MCs) were prepared through a multistep process involving electrospun microfibers coated with a polymer blend solution and used as a sacrificial mold. In particular, scaffolds characterized by random (MCR) and aligned (MCA) multichannel were obtained. A design of experiments approach (DoE) was employed to identify a scaffold-optimized composition. MCs were characterized for morphological and mechanical properties, suturability, degradability, cell colonization, and in vivo safety. A new biodegradable, biocompatible, and safe microscale multichannel scaffold was developed as the result of an easy multistep procedure.


Asunto(s)
Traumatismos de los Nervios Periféricos , Ácido Poliglicólico , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Láctico , Andamios del Tejido
9.
Antioxidants (Basel) ; 12(2)2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36829832

RESUMEN

Clove oil (CO) is a powerful antioxidant essential oil (EO) with anti-inflammatory, anesthetic, and anti-infective properties. It can be therefore considered a good candidate for wound-healing applications, especially for chronic or diabetic wounds or burns, where the balance of reactive oxygen species (ROS) production and detoxification is altered. However, EOs require suitable formulations to be efficiently administered in moist wound environments. Chitosan hydrophobically modified by an ionic interaction with oleic acid (chitosan oleate, CSO) was used in the present work to stabilize CO nanoemulsions (NEs). The dimensions of the NE were maintained at around 300 nm as the volume distribution for up to six months, and the CO content did not decrease to under 80% over 4 months, confirming the good stabilizing properties of CSO. The antioxidant properties of the CO NE were evaluated in vitro by a 2,2-diphenil-2-picrylhydrazyl hydrate (DPPH) assay, and in fibroblast cell lines by electron paramagnetic resonance (EPR) using α-phenyl-N-tert-butyl nitrone (PBN) as a spin trap; a protective effect was obtained comparable to that obtained with α-tocopherol treatment. In a murine burn model, the ability of CO formulations to favor macroscopic wound closure was evidenced, and a histological analysis revealed a positive effect of the CO NE on the reparation of the lesion after 18 days. Samples of wounds at 7 days were subjected to a histological analysis and parallel dosage of lipid peroxidation by means of a thiobarbituric acid-reactive substances (TBARS) assay, confirming the antioxidant and anti-inflammatory activity of the CO NE.

10.
Int J Pharm ; 634: 122669, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36736969

RESUMEN

Fiber spinning technologies attracted a great interest since the beginning of the last century. Among these, electrospinning is a widely diffuse technique; however, it presents some drawbacks such as low fiber yield, high energy demand and the use of organic solvents. On the contrary, centrifugal spinning is a more sustainable method and allows to obtain fiber using centrifugal force and melted materials. The aim of the present work was the design and the development of polydioxanone (PDO) microfibers intended for tissue engineering, using centrifugal spinning. PDO, a bioresorbable polymer currently used for sutures, was selected as low melting polyester and DES (deep eutectic solvents), either choline chloride/citric acid (ChCl/CA) or betaine/citric acid (Bet/CA) 1:1 M ratio, were used to improve PDO spinnability. Physical mixtures of DES and PDO were prepared using different weight ratios. These were then poured into the spinneret and melted at 140 °C for 5 min. After the complete melting, the blends were spun for 1 min at 700 rpm. The fibers were characterized for physico chemical properties (morphology; dimensions; chemical structure; thermal behavior; mechanical properties). Moreover, the preclinical investigation was performed in vitro (biocompatibility, adhesion and proliferation of fibroblasts) and in vivo (murine burn/excisional model to assess safety and efficacy). The multidisciplinary approach allowed to obtain an extensive characterization to develop PDO based microfibers as medical device for implant to treat full thickness skin wounds.


Asunto(s)
Polidioxanona , Ingeniería de Tejidos , Ratones , Animales , Polidioxanona/química , Poliésteres/química , Piel , Polímeros , Andamios del Tejido/química
11.
Biomedicines ; 10(11)2022 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-36359336

RESUMEN

BACKGROUND: In end-stage chronic liver disease, transplantation represents the only curative option. However, the shortage of donors results in the death of many patients. To overcome this gap, it is mandatory to develop new therapeutic options. In the present study, we decellularised pig livers and reseeded them with allogeneic porcine mesenchymal stromal cells (pMSCs) to understand whether extracellular matrix (ECM) can influence and/or promote differentiation into hepatocyte-like cells (HLCs). METHODS: After decellularisation with SDS, the integrity of ECM-scaffolds was examined by histological staining, immunofluorescence and scanning electron microscope. DNA quantification was used to assess decellularisation. pMSCs were plated on scaffolds by static seeding and maintained in in vitro culture for 21 days. At 3, 7, 14 and 21 days, seeded ECM scaffolds were evaluated for cellular adhesion and growth. Moreover, the expression of specific hepatic genes was performed by RT-PCR. RESULTS: The applied decellularisation/recellularisation protocol was effective. The number of seeded pMSCs increased over the culture time points. Gene expression analysis of seeded pMSCs displayed a weak induction due to ECM towards HLCs. CONCLUSIONS: These results suggest that ECM may address pMSCs to differentiate in hepatocyte-like cells. However, only contact with liver-ECM is not enough to induce complete differentiation.

12.
Mater Today Bio ; 16: 100418, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36157051

RESUMEN

Chronic wounds (resulting from underlying disease, metabolic disorders, infections, trauma, and even tumours) pose significant health problems. In this work, microparticles, based on polysaccharides (maltodextrin or dextran) and amino acids, and doped with antibacterial nanoparticles (CuO or ZnO NPs) are designed. Smart nano-in-microparticles with a hierarchical 3D structure are developed. The ultimate goal aims at an innovative platform to achieve skin repair and to manage skin colonization by avoiding infection that could delay and even impair the healing process. The microparticles are prepared by spray-drying and cross-linked by heating, to obtain insoluble scaffolds able to facilitate cell proliferation in the wound bed. The nano-in-microparticles are characterized using a multidisciplinary approach: chemico-physical properties (SEM, SEM-EDX, size distribution, swelling and degradation properties, structural characterization - FTIR, XRPD, SAXS - mechanical properties, surface zeta potential) and preclinical properties (in vitro biocompatibility and whole-blood clotting properties, release studies and antimicrobial properties, and in vivo safety and efficacy on murine burn/excisional wound model) were assessed. The hierarchical 3D nano-in microparticles demonstrate to promote skin tissue repair in a preclinical study, indicating that this platform deserves particular attention and further investigation will promote the prototypes translation to clinics.

13.
Biomater Adv ; 133: 112593, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35527142

RESUMEN

The goal of this work is the design and the development of scaffolds based on maltodextrin (MD) to recover chronic lesions. MD was mixed with arginine/lysine/polylysine and the electrospinning was successfully used to prepare scaffolds with uniform and continuous nanofibers having regular shape and smooth surface. A thermal treatment was applied to obtain insoluble scaffolds in aqueous environment, taking the advantage of amino acids-polysaccharide conjugates formed via Maillard-type reaction. The morphological analysis showed that the scaffolds had nanofibrous structures, and that the cross-linking by heating did not significantly change the nanofibers' dimensions and did not alter the system stability. Moreover, the heating process caused a reduction of free amino group and proportionally increased scaffold cross-linking degree. The scaffolds were elastic and resistant to break, and possessed negative zeta potential in physiological fluids. These were characterized by direct antioxidant properties and Fe2+ chelation capability (indirect antioxidant properties). Moreover, the scaffolds were cytocompatible towards fibroblasts and monocytes-derived macrophages, and did not show any significant pro-inflammatory activity. Finally, those proved to accelerate the recovery of the burn/excisional wounds. Considering all the features, MD-poly/amino acids scaffolds could be considered as promising medical devices for the treatment of chronic wounds.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Aminoácidos , Antioxidantes , Polisacáridos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química
14.
Carbohydr Polym ; 220: 219-227, 2019 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-31196543

RESUMEN

Burns and chronic wounds, often related to chronic diseases (as diabetes and cancer), are challenging lesions, difficult to heal. The prompt and full reconstitution of a functional skin is at the basis of the development of biopolymer-based scaffolds, representing a 3D substrate mimicking the dermal extracellular matrix. Aim of the work was to develop scaffolds intended for skin regeneration, according to: fabrication by electrospinning from aqueous polysaccharide solutions; prompt and easy treatment to obtain scaffolds insoluble in aqueous fluids; best performance in supporting wound healing. Three formulations were tested, based on chitosan (CH) and pullulan (P), associated with glycosaminoglycans (chondroitin sulfate - CS or hyaluronic acid - HA). A multidisciplinary approach has been used: chemico-physical characterization and preclinical evaluation allowed to obtain integrated information. This supports that CS gives distinctive properties and optimal features to the scaffold structure for promoting cell proliferation leading tissue reparation towards a complete skin restore.


Asunto(s)
Materiales Biocompatibles/química , Quitosano/química , Sulfatos de Condroitina/química , Glucanos/química , Ácido Hialurónico/química , Ingeniería de Tejidos , Andamios del Tejido , Cicatrización de Heridas , Materiales Biocompatibles/uso terapéutico , Quemaduras/terapia , Humanos , Piel Artificial
15.
Regen Med ; 13(4): 385-394, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29985749

RESUMEN

AIM: We evaluated the effects of the intradermal injection of extracellular vesicles (EVs) derived from adipose stem cells (ASC-EVs) and bone marrow cells (BM-EVs) in an experimental cutaneous wound repair model. METHODS: Mesenchymal stem cells (MSCs) were in vitro expanded from adipose (ASC) or BM tissues (BM-MSC) of rabbits. EVs were separated from the supernatants of confluent ASC and BM-MSCs. Two skin wounds were induced in each animal and treated with MSC or EV injections. Histological examination was performed postinoculation. RESULTS: EV-treated wounds exhibited a better restoration compared with the counterpart MSC treatment. ASC-EV-treated wounds were significantly better than BM-EVs (p = 0.036). CONCLUSION: EV topical inoculation provides restored architecture during cutaneous wound healing and represents a promising solution for regenerative medicine in children.


Asunto(s)
Micropartículas Derivadas de Células/trasplante , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas , Heridas y Lesiones/terapia , Tejido Adiposo/metabolismo , Tejido Adiposo/patología , Animales , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/patología , Femenino , Humanos , Células Madre Mesenquimatosas/patología , Conejos , Heridas y Lesiones/metabolismo , Heridas y Lesiones/patología
16.
Int J Nanomedicine ; 13: 175-186, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29343956

RESUMEN

Chronic wounds and severe burns are diseases responsible for severe morbidity and even death. Wound repair is a crucial process and tissue regeneration enhancement and infection prevention are key factors to minimize pain, discomfort, and scar formation. The aim of this work was the development of lipid nanoparticles (solid lipid nanoparticles and nanostructured lipid carriers [NLC]), to be loaded with eucalyptus or rosemary essential oils and to be used, as medical devices, to enhance healing of skin wounds. Lipid nanoparticles were based on natural lipids: cocoa butter, as solid lipid, and olive oil or sesame oil, as liquid lipids. Lecithin was chosen as surfactant to stabilize nanoparticles and to prevent their aggregation. The systems were prepared by high shear homogenization followed by ultrasound application. Nanoparticles were characterized for physical-chemical properties, bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward normal human dermal fibroblasts. Antimicrobial activity of nanoparticles was evaluated against two reference microbial strains, one of Staphylococcus aureus, the other of Streptococcus pyogenes. Finally, the capability of nanoparticles to promote wound healing in vivo was evaluated on a rat burn model. NLC based on olive oil and loaded with eucalyptus oil showed appropriate physical-chemical properties, good bioadhesion, cytocompatibility, in vitro proliferation enhancement, and wound healing properties toward fibroblasts, associated to antimicrobial properties. Moreover, the in vivo results evidenced the capability of these NLC to enhance the healing process. Olive oil, which is characterized by a high content of oleic acid, proved to exert a synergic effect with eucalyptus oil with respect to antimicrobial activity and wound repair promotion.


Asunto(s)
Antiinfecciosos/farmacología , Nanopartículas/química , Aceites Volátiles/farmacología , Cicatrización de Heridas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Portadores de Fármacos/administración & dosificación , Portadores de Fármacos/química , Eucalyptus/química , Fibroblastos , Humanos , Lecitinas/química , Lípidos/química , Masculino , Nanopartículas/administración & dosificación , Aceites Volátiles/administración & dosificación , Aceites Volátiles/química , Ratas , Ratas Wistar , Staphylococcus aureus/efectos de los fármacos , Streptococcus pyogenes/efectos de los fármacos
17.
J Pain Res ; 10: 2515-2524, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29184436

RESUMEN

Continuous wound infusion (CWI) may protect from inflammation, hyperalgesia and persistent pain. Current local anesthetics display suboptimal pharmacokinetic profile during CWI; chloroprocaine (CP) has ideal characteristics, but has never been tested for CWI. We performed an animal study to investigate the pharmacokinetic profile and anti-inflammatory effect of CP during CWI. A total of 14 piglets received an infusion catheter after pararectal laparotomy and were randomly allocated to one of three groups: 5 mL/h infusion of saline (group A), CP 1.5% (group B) and CP 0.5% (group C). Blood sampling was performed to assess absorption and systemic inflammation at 0, 3, 6, 12, 24, 48, 72, 96, 102 and 108 hours. The wound and contralateral healthy abdominal wall were sampled for histological analyses. Absorption of CP from the site of infusion, evaluated as the plasmatic concentrations of CP and its metabolite, 4-amino-2-chlorobenzoic acid (CABA), showed a peak during the first 6 hours, but both CP and its metabolite rapidly disappeared after stopping CP infusion. Local inflammation was reduced in groups B and C (CP-treated p < 0.001), in a CP dose-dependent fashion. While CP inhibited in a dose-dependent manner pig mononuclear cells (MNCs) in vitro proliferation to a polyclonal activator, no effect on systemic cytokines' concentrations or on ex vivo monocytes' responsiveness was observed, suggesting the lack of systemic effects, in line with the very short half-life of CP in plasma. CP showed a very good profile for use in CWI, with dose-dependent local anti-inflammatory effects, limited absorption and rapid clearance from the bloodstream upon discontinuation. No cytotoxicity or side effects were observed. CP, therefore, may represent an optimal choice for clinical CWI, adaptable to each patient's need, and protective on wound inflammatory response (and hyperalgesia) after surgery.

18.
Expert Opin Drug Deliv ; 14(4): 453-465, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28276966

RESUMEN

BACKGROUND: In situ forming biodegradable poly(ε-caprolactone) (PCL) microspheres (PCL-ISM) system was developed as a novel embolic agent for transarterial embolization (TAE) therapy of hepatocellular carcinoma (HCC). Ibuprofen sodium (Ibu-Na) was loaded on this platform to evaluate its potential for the treatment of post embolization syndrome. METHODS: The influence of formulation parameters on the size/shape, encapsulation efficiency and drug release was investigated using mixture experimental design. Regression models were derived and used to optimize the formulation for particle size, encapsulation efficiency and drug release profile for TAE therapy. An ex vivo model using isolated rat livers was established to assess the in situ formation of microspheres. RESULTS: All PCL-ISM components affected the studied properties and fitting indices of the regression models were high (Radj2 = 0.810 for size, 0.964 encapsulation efficiency, and 0.993 or 0.971 for drug release at 30 min or 48 h). The optimized composition was: PCL = 4%, NMP = 43.1%, oil = 48.9%, surfactant = 2% and drug = 2%. Ex vivo studies revealed that PCL-ISM was able to form microspheres in the hepatic arterial bed. CONCLUSIONS: PCL-ISM system provides a novel tool for the treatment of HCC and post-embolization syndrome. It is capable of forming microspheres with desirable size and Ibu-Na release profile after injection into blood vessels.


Asunto(s)
Ibuprofeno/administración & dosificación , Microesferas , Poliésteres/química , Animales , Química Farmacéutica , Liberación de Fármacos , Masculino , Tamaño de la Partícula , Ratas , Ratas Sprague-Dawley
19.
Int J Pharm ; 509(1-2): 59-70, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27215534

RESUMEN

The aim of the present work was the development of a powder formulation for the delivery of manuka honey (MH) bioactive components and platelet lysate (PL) in chronic skin ulcers. In particular pectin (PEC)/chitosan (CS) particles were prepared by ionotropic gelation in the presence of calcium chloride and subsequently characterized for particle size, hydration properties and mechanical resistance. Different experimental conditions (calcium chloride and CS concentrations; rest time in the cationic solution) were considered in order to obtain particles characterized by optimal size, hydration properties and mechanical resistance. Two different fractions of MH were examined: one (Fr1), rich in methylglyoxal and the other (Fr2), rich in polyphenols. Particles were loaded with Fr1, fraction able to enhance in vitro proliferation of human fibroblasts, and with PL. The presence of CS in Fr1-loaded particles produced an improvement in cell proliferation. Moreover, PL loading into particles did not affect the biological activity of the hemoderivative. In vivo efficacy of PL- and Fr1-loaded particles was evaluated on a rat wound model. Both treatments markedly increased wound healing to the same extent.


Asunto(s)
Plaquetas/química , Quitosano/química , Leptospermum/química , Pectinas/química , Preparaciones de Plantas/administración & dosificación , Úlcera Cutánea/tratamiento farmacológico , Cicatrización de Heridas/efectos de los fármacos , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Fibroblastos/efectos de los fármacos , Geles/administración & dosificación , Geles/química , Miel , Humanos , Masculino , Tamaño de la Partícula , Preparaciones de Plantas/química , Ratas , Ratas Wistar
20.
Int J Pharm ; 509(1-2): 188-196, 2016 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-27234702

RESUMEN

Hemoderivative tear substitutes contain various ephiteliotrophic factors, such as growth factors (GF), involved in ocular surface homeostasis without immunogenic properties. The aim of the present work was the loading of platelet lysate into contact lenses to improve the precorneal permanence of platelet lysate growth factors on the ocular surface to enhance the treatment of corneal lesions. To this purpose, chondroitin sulfate, a sulfated glycosaminoglycan, which is normally present in the extracellular matrix, was associated with platelet lysate. In fact, chondroitin sulfate is capable of electrostatic interaction with positively charged growth factors, in particular, with bFGF, IGF, VEGF, PDGF and TGF-ß, resulting in their stabilization and reduced degradation in solution. In the present work, various types of commercially available contact lenses have been loaded with chondroitin sulfate or chondroitin sulfate in association with platelet lysate to achieve a release of growth factors directly onto the corneal surface lesions. One type of contact lenses (PureVision(®)) showed in vitro good proliferation properties towards corneal cells and were able to enhance cut closure in cornea constructs.


Asunto(s)
Plaquetas/metabolismo , Sulfatos de Condroitina/administración & dosificación , Córnea/efectos de los fármacos , Enfermedades de la Córnea/tratamiento farmacológico , Péptidos y Proteínas de Señalización Intercelular/administración & dosificación , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Lentes de Contacto , Matriz Extracelular/metabolismo , Células Endoteliales de la Vena Umbilical Humana , Humanos , Conejos , Cicatrización de Heridas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...