Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Foods ; 12(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37959059

RESUMEN

The impact of different light conditions during culture on the nitrogen, protein, colour, total phenolic content (TPC) and amino acid profile of Palmaria palmata biomass was investigated. P. palmata was cultured using different light regimes, i.e., white (1 and 2), red, blue and green over 12 days. A significant decrease (p < 0.05) in total nitrogen (TN), non-protein nitrogen (NPN) and protein nitrogen (PN) was observed on day 6 while an increase was observed on day 12 in P. palmata samples cultured under blue light. The protein content (nitrogen conversion factor of 4.7) of the initial sample on day 0 was 15.0% (w/w) dw whereas a maximum protein content of 16.7% (w/w) was obtained during exposure to blue light following 12 days culture, corresponding to an 11.2% increase in protein content. Electrophoretic along with amino acid profile and score analyses showed light-related changes in protein composition. The lighting regime used during culture also influenced the colour parameters (lightness L*, redness a*, yellowness b* and colour difference ΔE) of milled algal biomass along with the TPC. Judicious selection of lighting regime during culture may allow the targeted production of sustainable high-quality proteins from P. palmata.

2.
Food Chem ; 321: 126686, 2020 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-32247182

RESUMEN

Impacts of 2-butanol and ß-cyclodextrin (ß-CD) at various ratios and treatment times on bitterness, physicochemical and functional properties of Alcalase salmon frame protein hydrolysate (ASF) were investigated. ASF treated with 2-butanol at a ratio of 1:4 (w/v) for 20 min (ASFB) or with ß-CD at a ratio of 1:1 (w/w) for 30 min (ASF-C-1) had lower bitterness score than ASF (p < 0.05). Bitterness score of ASF (8.45) was reduced to the lowest score (1.32) when ASFB was subsequently treated with ß-CD at a 1:1 ratio (w/w) for 30 min (ASFB-C-1). Surface hydrophobicity of all debittered samples was lower than that of ASF sample (p < 0.05). The level of aromatic amino acids-containing peptides was reduced in ASFB-C-1 as shown by gel permeation chromatography. ASFB-C-1 sample had higher overall-likeness score but lower antioxidant properties than ASF (p < 0.05). The desired antioxidant activity could be achieved via increasing the amount of protein hydrolysate without imparting undesirable taste.


Asunto(s)
Antioxidantes/química , Proteínas de Peces en la Dieta/química , Salmo salar , Subtilisinas/química , beta-Ciclodextrinas/química , Animales , Butanoles/química , Proteínas de Peces en la Dieta/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Péptidos/química , Salmo salar/metabolismo , Alimentos Marinos , Subtilisinas/metabolismo , Gusto
3.
J Food Sci Technol ; 57(2): 473-483, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32116357

RESUMEN

Protein hydrolysates were obtained from salmon frame using Alcalase or Flavourzyme at 3% (w/w protein) for 180 min. Protein hydrolysates prepared using Alcalase (HA) and Flavourzyme (HF) had DH and yield of 25.1-26.9% and 28.5-32.3 g/100 g sample, respectively. HF showed lower bitterness score (5.78) than that of HA (8.68) (P < 0.05). When HA and HF were further subjected to debittering with 2-butanol or isopropanol, the recovery of 77.88-81.60% was obtained (P < 0.05). HF and HA debittered with 2-butanol possessed less bitterness score, 3.60 and 3.77, respectively (P < 0.05). Surface hydrophobicity of 81.4 and 124.8 was attained when HF and HA were debittered with 2-butanol (P < 0.05). Selected debittered hydrolysates, produced using Flavourzyme, followed by fractionation using 2-butanol (HF-B) contained glutamic acid/glutamine (15.14 g/100 g), aspartic acid/asparagine (10.07 g/100 g) and glycine (9.30 g/100 g) as the predominant amino acids. HF-B had the decreased ABTS radical scavenging activity and metal chelating activity. A280 of peptides separated by gel filtration was lowered to some extent and coincided with the lower bitterness score and surface hydrophobicity. Thus, debittered protein hydrolysate from salmon frame could serve as a nutritive ingredient at high levels in health promoting foods.

4.
J Food Biochem ; 43(9): e12978, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31489658

RESUMEN

Fish processing by-products often generated as discard can enzymatically be processed into a product known as fish protein hydrolysates (FPH). FPH is a good source of amino acid and peptides with bioactivities. FPH can be added to foods to improve nutritive values and bioactivities. However, bitterness in FPH, associated with hydrophobicity, degree of hydrolysis, molecular weight, proline residues, type of enzymes, and amino acid sequences has limited its uses in foods. Thus, FPH is used in foods at low levels. Numerous procedures such as extraction with alcohol, activated carbon treatment, Maillard reaction, cyclodextrin, chromatographic separation, and enzymatic hydrolysis with exopeptidase and plastein reaction have been explored to remove the bitterness of FPH. These methods can lower bitterness and improve its taste. However, changes in structure and loss of some peptides may occur. FPH with less or no bitterness can therefore be used at higher levels to alleviate nutrition deficiencies in foods. PRACTICAL APPLICATIONS: Fish protein hydrolysate (FPH) is a nutritive ingredient, which can be produced from fish processing by-products. However, bitterness in FPH has limited its potential use as a nutritive ingredient. As a result, it is incorporated into foods at low levels. Nevertheless, application of several reported debittering processes could assist to solve the problem of bitterness in FPH. The debittering can improve sensory property of FPH, thus widening its utilization.


Asunto(s)
Proteínas de Peces/química , Proteínas de Peces/farmacología , Manipulación de Alimentos/métodos , Hidrolisados de Proteína/química , Hidrolisados de Proteína/farmacología , Gusto , Animales
5.
J Food Biochem ; 43(2): e12734, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-31353651

RESUMEN

Protein hydrolysates from two forms of salmon frames named "chunk" and "mince" were produced and characterized. Both samples were subjected to hydrolysis using alcalase and papain at 1%-3% (w/w protein) for 0-240 min. Hydrolysate prepared with either protease at 3% for 180 min had the solid yield of 24.05%-26.39%. Hydrolysates contained 79.20%-82.01% proteins, 6.03%-6.34% fat, 9.81%-11.09% ash, and 4.02%-5.80% moisture. Amino acid profile showed that all hydrolysates had glutamic acid/glutamine (113.45-117.56 mg/g sample), glycine (77.86-86.18 mg/g sample), aspartic acid/asparagine (76.04-78.67 mg/g sample), lysine (61.97-65.99 mg/g sample), and leucine (54.30-57.31 mg/g sample) as the predominant amino acids. The size distributions determined by gel filtration chromatography varied, depending on proteases and the form of frame used for the hydrolysis. Different hydrolysates showed varying antioxidant capacities. Thus, protein hydrolysates from salmon frame could be used as a nutritive supplement in the protein deficient foods. PRACTICAL APPLICATIONS: Frames of salmon are by-products from salmon fish processing industries. The frames contained the remaining meat, hence they can be used for the preparation of protein hydrolysates. Generally, hydrolysates from fish by-products have been regarded as a promising food supplement, because they are rich in amino acids. Additionally, hydrolysates possess antioxidant activity, which is of health benefit. To produce the hydrolysate with less time consumption, the use of frame chunk instead of minced frame can be of better choice. Thus, frame of salmon, especially in chunk form, could be used as a raw material for production of protein hydrolysate using alcalase. The hydrolysate produced from salmon frame could serve as an alternative nutritive supplement to tackle the nutrition inadequacies in foods.


Asunto(s)
Antioxidantes/química , Proteínas de Peces/química , Hidrolisados de Proteína/química , Residuos/análisis , Animales , Biocatálisis , Manipulación de Alimentos , Hidrólisis , Papaína/química , Salmón , Subtilisinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...