Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6554, 2024 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-39095463

RESUMEN

Accelerating perovskite solid solution discovery and sustainable synthesis is crucial for addressing challenges in wireless communication and biosensors. However, the vast array of chemical compositions and their dependence on factors such as crystal structure, and sintering temperature require time-consuming manual processes. To overcome these constraints, we introduce an automated materials discovery approach encompassing machine learning (ML) assisted material screening, robotic synthesis, and high-throughput characterization. Our proposed platform for rapid sintering and dielectric analysis streamlines the characterization of perovskites and the discovery of disordered materials. The setup has been successfully validated, demonstrating processing materials within minutes, in stark contrast to conventional procedures that can take hours or days. Following setup validation with established samples, we showcase synthesizing single-phase solid solutions within the barium family, such as (BaxSr1-x)CeO3, identified through ML-guided chemistry.

2.
Sensors (Basel) ; 23(12)2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37420713

RESUMEN

The design of a metasurface array consisting of different unit cells with the objective of minimizing its radar cross-section is a popular research topic. Currently, this is achieved by conventional optimisation algorithms such as genetic algorithm (GA) and particle swarm optimisation (PSO). One major concern of such algorithms is the extreme time complexity, which makes them computationally forbidden, particularly at large metasurface array size. Here, we apply a machine learning optimisation technique called active learning to significantly speed up the optimisation process while producing very similar results compared to GA. For a metasurface array of size 10 × 10 at a population size of 106, active learning took 65 min to find the optimal design compared to genetic algorithm, which took 13,260 min to return an almost similar optimal result. The active learning optimisation strategy produced an optimal design for a 60 × 60 metasurface array 24× faster than the approximately similar result generated by GA technique. Thus, this study concludes that active learning drastically reduces computational time for optimisation compared to genetic algorithm, particularly for a larger metasurface array. Active learning using an accurately trained surrogate model also contributes to further lowering of the computational time of the optimisation procedure.


Asunto(s)
Algoritmos , Aprendizaje Automático
3.
PLoS One ; 17(6): e0268962, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35704595

RESUMEN

The early detection of traumatic brain injuries can directly impact the prognosis and survival of patients. Preceding attempts to automate the detection and the assessment of the severity of traumatic brain injury continue to be based on clinical diagnostic methods, with limited tools for disease outcomes in large populations. Despite advances in machine and deep learning tools, current approaches still use simple trends of statistical analysis which lack generality. The effectiveness of deep learning to extract information from large subsets of data can be further emphasised through the use of more elaborate architectures. We therefore explore the use of a multiple input, convolutional neural network and long short-term memory (LSTM) integrated architecture in the context of traumatic injury detection through predicting the presence of brain injury in a murine preclinical model dataset. We investigated the effectiveness and validity of traumatic brain injury detection in the proposed model against various other machine learning algorithms such as the support vector machine, the random forest classifier and the feedforward neural network. Our dataset was acquired using a home cage automated (HCA) system to assess the individual behaviour of mice with traumatic brain injury or non-central nervous system (non-CNS) injured controls, whilst housed in their cages. Their distance travelled, body temperature, separation from other mice and movement were recorded every 15 minutes, for 72 hours weekly, for 5 weeks following intervention. The HCA behavioural data was used to train a deep learning model, which then predicts if the animals were subjected to a brain injury or just a sham intervention without brain damage. We also explored and evaluated different ways to handle the class imbalance present in the uninjured class of our training data. We then evaluated our models with leave-one-out cross validation. Our proposed deep learning model achieved the best performance and showed promise in its capability to detect the presence of brain trauma in mice.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Aprendizaje Profundo , Algoritmos , Animales , Lesiones Traumáticas del Encéfalo/diagnóstico , Humanos , Aprendizaje Automático , Ratones , Redes Neurales de la Computación
4.
PLoS One ; 16(2): e0242946, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33534826

RESUMEN

Emotion states recognition using wireless signals is an emerging area of research that has an impact on neuroscientific studies of human behaviour and well-being monitoring. Currently, standoff emotion detection is mostly reliant on the analysis of facial expressions and/or eye movements acquired from optical or video cameras. Meanwhile, although they have been widely accepted for recognizing human emotions from the multimodal data, machine learning approaches have been mostly restricted to subject dependent analyses which lack of generality. In this paper, we report an experimental study which collects heartbeat and breathing signals of 15 participants from radio frequency (RF) reflections off the body followed by novel noise filtering techniques. We propose a novel deep neural network (DNN) architecture based on the fusion of raw RF data and the processed RF signal for classifying and visualising various emotion states. The proposed model achieves high classification accuracy of 71.67% for independent subjects with 0.71, 0.72 and 0.71 precision, recall and F1-score values respectively. We have compared our results with those obtained from five different classical ML algorithms and it is established that deep learning offers a superior performance even with limited amount of raw RF and post processed time-sequence data. The deep learning model has also been validated by comparing our results with those from ECG signals. Our results indicate that using wireless signals for stand-by emotion state detection is a better alternative to other technologies with high accuracy and have much wider applications in future studies of behavioural sciences.


Asunto(s)
Aprendizaje Profundo , Emociones , Tecnología Inalámbrica , Adulto , Electrocardiografía , Frecuencia Cardíaca , Humanos , Redes Neurales de la Computación , Ondas de Radio , Respiración , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...