Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Gene ; 902: 148192, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38253295

RESUMEN

Naegleria fowleri, the brain-eating amoeba, is a free-living amoeboflagellate with three different life cycles (trophozoite, flagellated, and cyst) that lives in a variety of habitats around the world including warm freshwater and soil. It causes a disease called naegleriasis leading meningitis and primary amoebic meningoencephalitis (PAM) in humans. N. fowleri is transmitted through contaminated water sources such as insufficiently chlorinated swimming pool water or contaminated tap water, and swimmers are at risk. N. fowleri is found all over the world, and most infections were reported in both developed and developing countries with high mortality rates and serious clinical findings. Until now, there is no FDA approved vaccine and early diagnosis is urgent against this pathogen. In this study, by analyzing the N. fowleri vaccine candidate proteins (Mp2CL5, Nfa1, Nf314, proNP-A and proNP-B), it was aimed to discover diagnostic/vaccine candidate epitopes and to design a multi-epitope peptide vaccine against this pathogen. After the in silico evaluation, three prominent diagnostic/vaccine candidate epitopes (EAKDSK, LLPHIRILVY, and FYAKLLPHIRILVYS) with the highest antigenicities were discovered and a potentially highly immunogenic/antigenic multi-epitope peptide vaccine (NaeVac) was designed against the brain-eating amoeba N. fowleri causing human meningitis.


Asunto(s)
Amoeba , Meningitis , Naegleria fowleri , Vacunas , Humanos , Vacunas de Subunidades Proteicas , Epítopos , Agua , Encéfalo
2.
Curr Mol Med ; 24(3): 281-297, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-36941811

RESUMEN

One of the biggest challenges in the fight against cancer is early detection. Early diagnosis is vital, but there are some barriers such as economic, cultural, and personal factors. Considering the disadvantages of radiological imaging techniques or serological analysis methods used in cancer diagnosis, such as being expensive, requiring expertise, and being time-consuming, there is a need to develop faster, more reliable, and cost-effective diagnostic methods for use in cancer diagnosis. Exosomes, which are responsible for intercellular communication with sizes ranging from 30-120 nm, are naturally produced biological nanoparticles. Thanks to the cargo contents they carry, they are a potential biomarker to be used in the diagnosis of cancer. Exosomes, defined as extracellular vesicles of endosomal origin, are effective in cancer growth, progression, metastasis, and drug resistance, and changes in microenvironmental conditions during tumor development change exosome secretion. Due to their high cellular activity, tumor cells produce much higher exosomes than healthy cells. Therefore, it is known that the number of exosomes in body fluids is significantly rich compared to other cells and can act as a stand-alone diagnostic biomarker. Cancer- derived exosomes have received great attention in recent years for the early detection of cancer and the evaluation of therapeutic response. In this article, the content, properties, and differences of exosomes detected in common types of cancer (lung, liver, pancreas, ovaries, breast, colorectal), which are the leading causes of cancer-related deaths, are reviewed. We also discuss the potential utility of exosome contents as a biomarker for early detection, which is known to be important in targeted cancer therapy.


Asunto(s)
Exosomas , Vesículas Extracelulares , Neoplasias , Humanos , Neoplasias/patología , Biomarcadores , Biomarcadores de Tumor
3.
J Vector Borne Dis ; 60(2): 125-141, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37417162

RESUMEN

Leishmaniasis is a parasitic disease with different clinical forms caused by protozoan parasites of the genus Leishmania and transmitted by the bite of an infected female sandfly. According to the World Health Organization (WHO), it is the second most common parasitic disease after malaria and it is known that approximately 350 million people are at risk. The disease manifests itself in different clinical forms. In addition to asymptomatic cases, cutaneous leishmaniasis (CL), which creates large lesions on the skin, and visceral leishmaniasis (VL), which causes death if not treated, especially affecting the abdominal organs, are two important clinical forms. When the studies were examined, it was seen that a clinically used vaccine against any form of human leishmaniasis has not been developed yet. In some studies, it was stated that the lack of appropriate adjuvant was responsible for the failure to develop an effective Leishmania vaccine. We can say that strong adjuvants are needed to achieve successful vaccines. In this article, adjuvants and adjuvant candidates used in vaccine studies against leishmaniasis are discussed.


Asunto(s)
Leishmania , Vacunas contra la Leishmaniasis , Leishmaniasis Cutánea , Leishmaniasis Visceral , Femenino , Humanos , Adyuvantes Inmunológicos
4.
Colloids Surf B Biointerfaces ; 228: 113421, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37356137

RESUMEN

The development of novel vaccine formulations against tuberculosis is necessary to reduce the number of new cases worldwide. Polymeric nanoparticles offer great potential as antigen delivery and immunostimulant systems for such purposes. In the study, we have encapsulated the antigenic peptide epitope of ESAT-6 protein of M. tuberculosis into PLGA nanoparticles and coated these nanoparticles with the cationic polymer of quaternized poly(4-vinylpyridine) (QPVP) to obtain a positively charged system as a potential nasal vaccine prototype. The produced spherical nanoparticles had hydrodynamic diameters between 180 and 240 nm with a narrow size distribution. The non-coated nanoparticle exhibited a 3-phase in vitro release profile that was completed in more than 4 months. In this release study, 5% of the peptide was released in the first 6 h and the nanoparticle remained silent until the 70th day. Then, an additional 5% of the peptide was released in 45 days. After coating the nanoparticle with QPVP, the release periods and peptide amounts dramatically changed. The antigenic peptide-loaded nanoparticles coated with the polycation stimulated the macrophages in vitro to release more nitric oxide (NO) compared to the free peptide and non-coated nanoparticle, which reveals the immunostimulant activity of the produced nanoparticle systems. The produced non-coated nanoparticles with the prolonged pulsatile release of the antigenic peptide can be used in the development of single injection self-boosting vaccine formulations. By coating these nanoparticles, both the release profile and immunogenicity can be changed.


Asunto(s)
Nanopartículas , Tuberculosis , Vacunas , Humanos , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Ácido Poliglicólico , Péptidos , Adyuvantes Inmunológicos/farmacología
5.
Curr Mol Med ; 2023 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-37165594

RESUMEN

mTOR is a serine/threonine kinase that plays various roles in cell growth, proliferation, and metabolism. mTOR signaling in cancer becomes irregular. Therefore, drugs targeting mTOR have been developed. Although mTOR inhibitors rapamycin and rapamycin rapalogs (everolimus, rapamycin, temsirolimus, deforolimus, etc.) and new generation mTOR inhibitors (Rapalink, Dual PI3K/mTOR inhibitors, etc.) are used in cancer treatments, mTOR resistance mechanisms may inhibit the efficacy of these drugs. Therefore, new inhibition approaches are developed. Although these new inhibition approaches have not been widely investigated in cancer treatment, the use of nanoparticles has been evaluated as a new treatment option in a few types of cancer. This review outlines the functions of mTOR in the cancer process, its resistance mechanisms, and the efficiency of mTOR inhibitors in cancer treatment. Furthermore, it discusses the next-generation mTOR inhibitors and inhibition strategies created using nanoparticles. Since mTOR resistance mechanisms prevent the effects of mTOR inhibitors used in cancer treatments, new inhibition strategies should be developed. Inhibition approaches are created using nanoparticles, and one of them offers a promising treatment option with evidence supporting its effectiveness.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA