Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Mol Cell Neurosci ; 126: 103864, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37268283

RESUMEN

Oxygen deprivation is one of the main causes of morbidity and mortality in newborns, occurring with a higher prevalence in preterm infants, reaching 20 % to 50 % mortality in newborns in the perinatal period. When they survive, 25 % exhibit neuropsychological pathologies, such as learning difficulties, epilepsy, and cerebral palsy. White matter injury is one of the main features found in oxygen deprivation injury, which can lead to long-term functional impairments, including cognitive delay and motor deficits. The myelin sheath accounts for much of the white matter in the brain by surrounding axons and enabling the efficient conduction of action potentials. Mature oligodendrocytes, which synthesize and maintain myelination, also comprise a significant proportion of the brain's white matter. In recent years, oligodendrocytes and the myelination process have become potential therapeutic targets to minimize the effects of oxygen deprivation on the central nervous system. Moreover, evidence indicate that neuroinflammation and apoptotic pathways activated during oxygen deprivation may be influenced by sexual dimorphism. To summarize the most recent research about the impact of sexual dimorphism on the neuroinflammatory state and white matter injury after oxygen deprivation, this review presents an overview of the oligodendrocyte lineage development and myelination, the impact of oxygen deprivation and neuroinflammation on oligodendrocytes in neurodevelopmental disorders, and recent reports about sexual dimorphism regarding the neuroinflammation and white matter injury after neonatal oxygen deprivation.


Asunto(s)
Lesiones Encefálicas , Sustancia Blanca , Recién Nacido , Humanos , Embarazo , Femenino , Oxígeno/metabolismo , Enfermedades Neuroinflamatorias , Recien Nacido Prematuro , Vaina de Mielina/metabolismo , Encéfalo/metabolismo , Oligodendroglía/metabolismo , Sustancia Blanca/metabolismo , Lesiones Encefálicas/metabolismo
2.
Semin Cell Dev Biol ; 144: 67-76, 2023 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-36115764

RESUMEN

The use of antidepressants during pregnancy benefits the mother's well-being, but the effects of such substances on neurodevelopment remain poorly understood. Moreover, the consequences of early exposure to antidepressants may not be immediately apparent at birth. In utero exposure to selective serotonin reuptake inhibitors (SSRIs) has been related to developmental abnormalities, including a reduced white matter volume. Several reports have observed an increased incidence of autism spectrum disorder (ASD) and attention deficit hyperactivity disorder (ADHD) after prenatal exposure to SSRIs such as sertraline, the most widely prescribed SSRI. The advent of human-induced pluripotent stem cell (hiPSC) methods and assays now offers appropriate tools to test the consequences of such compounds for neurodevelopment in vitro. In particular, hiPSCs can be used to generate cerebral organoids - self-organized structures that recapitulate the morphology and complex physiology of the developing human brain, overcoming the limitations found in 2D cell culture and experimental animal models for testing drug efficacy and side effects. For example, single-cell RNA sequencing (scRNA-seq) and electrophysiological measurements on organoids can be used to evaluate the impact of antidepressants on the transcriptome and neuronal activity signatures in developing neurons. While the analysis of large-scale transcriptomic data depends on dimensionality reduction methods, electrophysiological recordings rely on temporal data series to discriminate statistical characteristics of neuronal activity, allowing for the rigorous analysis of the effects of antidepressants and other molecules that affect the developing nervous system, especially when applied in combination with relevant human cellular models such as brain organoids.


Asunto(s)
Trastorno del Espectro Autista , Inhibidores Selectivos de la Recaptación de Serotonina , Embarazo , Femenino , Recién Nacido , Animales , Humanos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Trastorno del Espectro Autista/tratamiento farmacológico , Trastorno del Espectro Autista/epidemiología , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Encéfalo , Organoides
3.
Exp Neurol ; 340: 113691, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33713657

RESUMEN

Therapeutic hypothermia (TH) is well established as a standard treatment for term and near-term infants. However, therapeutic effects of hypothermia following neonatal anoxia in very premature babies remains inconclusive. The present rodent model of preterm neonatal anoxia has been shown to alter developmental milestones and hippocampal neurogenesis, and to disrupt spatial learning and memory in adulthood. These effects seem to be reduced by post-insult hypothermia. Epigenetic-related mechanisms have been postulated as valuable tools for developing new therapies. Dentate gyrus neurogenesis is regulated by epigenetic factors. This study evaluated whether TH effects in a rodent model of preterm oxygen deprivation are based on epigenetic alterations. The effects of TH on both developmental features (somatic growth, maturation of physical characteristics and early neurological reflexes) and performance of behavioral tasks at adulthood (spatial reference and working memory, and fear conditioning) were investigated in association with the possible involvement of the epigenetic operator Enhancer of zeste homolog 2 (Ezh2), possibly related to long-lasting effects on hippocampal neurogenesis. Results showed that TH reduced both anoxia-induced hippocampal neurodegeneration and anoxia-induced impairments on risk assessment behavior, acquisition of spatial memory, and extinction of auditory and contextual fear conditioning. In contrast, TH did not prevent developmental alterations caused by neonatal anoxia and did not restore hippocampal neurogenesis or cause changes in EZH2 levels. In conclusion, despite the beneficial effects of TH in hippocampal neurodegeneration and in reversing disruption of performance of behavioral tasks following oxygen deprivation in prematurity, these effects seem not related to developmental alterations and hippocampal neurogenesis and, apparently, is not caused by Ezh2-mediated epigenetic alteration.


Asunto(s)
Hipocampo/crecimiento & desarrollo , Hipotermia Inducida/métodos , Hipoxia Encefálica/fisiopatología , Hipoxia Encefálica/terapia , Memoria Espacial/fisiología , Animales , Animales Recién Nacidos , Femenino , Hipoxia Encefálica/psicología , Lactancia/fisiología , Masculino , Ratas , Ratas Wistar , Resultado del Tratamiento
4.
Mol Neurobiol ; 55(2): 1620-1629, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190239

RESUMEN

The Zika virus (ZIKV) outbreak that occurred in the northeast of Brazil in 2015 led to alarming numbers of babies born with microcephaly in this region. Since then, several studies have evaluated the relationship between ZIKV infection and development of the malformation although the specific mechanistic interaction between ZIKV and human physiological processes that ultimately manifest as microcephaly remains debated. Importantly, most current studies did not consider the specificities of the biology and life cycle of ZIKV. As a consequence, specificities of the infection on the developing central nervous system (CNS) were frequently disregarded. In order to begin to address this important gap in our knowledge, we have collated and critically reviewed the existing evidence in this area to identify any emerging consensus on this topic and thereafter describe possible mechanisms by which ZIKV infection could interfere with specific processes of CNS development, such as neuronal proliferation, and the complex interactions of immature neurons with radial glial cells. With this, we were able to present the current knowledge on this important topic in the neurobiology field.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/virología , Desarrollo Fetal/fisiología , Microcefalia/virología , Infección por el Virus Zika , Proliferación Celular , Humanos , Neuronas/virología , Virus Zika
5.
PLoS One ; 12(1): e0169861, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28072885

RESUMEN

Anoxia is one of the most prevalent causes of neonatal morbidity and mortality, especially in preterm neonates, constituting an important public health problem due to permanent neurological sequelae observed in patients. Oxygen deprivation triggers a series of simultaneous cascades, culminating in cell death mainly located in more vulnerable metabolic brain regions, such as the hippocampus. In the process of cell death by oxygen deprivation, cytosolic calcium plays crucial roles. Intracellular inositol 1,4,5-trisphosphate receptors (IP3Rs) are important regulators of cytosolic calcium levels, although the role of these receptors in neonatal anoxia is completely unknown. This study focused on the functional role of inositol 1,4,5-trisphosphate receptor type 1 (IP3R1) in rat hippocampus after neonatal anoxia. Quantitative real-time PCR revealed a decrease of IP3R1 gene expression 24 hours after neonatal anoxia. We detected that IP3R1 accumulates specially in CA1, and this spatial pattern did not change after neonatal anoxia. Interestingly, we observed that anoxia triggers translocation of IP3R1 to nucleus in hippocampal cells. We were able to observe that anoxia changes distribution of IP3R1 immunofluorescence signals, as revealed by cluster size analysis. We next examined the role of IP3R1 in the neuronal cell loss triggered by neonatal anoxia. Intrahippocampal injection of non-specific IP3R1 blocker 2-APB clearly reduced the number of Fluoro-Jade C and Tunel positive cells, revealing that activation of IP3R1 increases cell death after neonatal anoxia. Finally, we aimed to disclose mechanistics of IP3R1 in cell death. We were able to determine that blockade of IP3R1 did not reduced the distribution and pixel density of activated caspase 3-positive cells, indicating that the participation of IP3R1 in neuronal cell loss is not related to classical caspase-mediated apoptosis. In summary, this study may contribute to new perspectives in the investigation of neurodegenerative mechanisms triggered by oxygen deprivation.


Asunto(s)
Región CA1 Hipocampal/metabolismo , Hipoxia/metabolismo , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Animales , Apoptosis , Señalización del Calcio , Receptores de Inositol 1,4,5-Trifosfato/genética , Masculino , Transporte de Proteínas , Ratas , Ratas Wistar
6.
Mol Neurobiol ; 54(9): 6870-6884, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-27771899

RESUMEN

It is well known that calcium (Ca2+) is involved in the triggering of neuronal death. Ca2+ cytosolic levels are regulated by Ca2+ release from internal stores located in organelles, such as the endoplasmic reticulum. Indeed, Ca2+ transit from distinct cell compartments follows complex dynamics that are mediated by specific receptors, notably inositol trisphosphate receptors (IP3Rs). Ca2+ release by IP3Rs plays essential roles in several neurological disorders; however, details of these processes are poorly understood. Moreover, recent studies have shown that subcellular location, molecular identity, and density of IP3Rs profoundly affect Ca2+ transit in neurons. Therefore, regulation of IP3R gene products in specific cellular vicinities seems to be crucial in a wide range of cellular processes from neuroprotection to neurodegeneration. In this regard, microRNAs seem to govern not only IP3Rs translation levels but also subcellular accumulation. Combining new data from molecular cell biology with mathematical modelling, we were able to summarize the state of the art on this topic. In addition to presenting how Ca2+ dynamics mediated by IP3R activation follow a stochastic regimen, we integrated a theoretical approach in an easy-to-apply, cell biology-coherent fashion. Following the presented premises and in contrast to previously tested hypotheses, Ca2+ released by IP3Rs may play different roles in specific neurological diseases, including Alzheimer's disease and Parkinson's disease.


Asunto(s)
Señalización del Calcio/fisiología , Lectinas Tipo C/fisiología , Proteínas de la Membrana/fisiología , Enfermedades Neurodegenerativas/metabolismo , Animales , Humanos , Receptores de Inositol 1,4,5-Trifosfato/fisiología , Enfermedades Neurodegenerativas/patología
7.
Mol Neurobiol ; 53(3): 2016-2028, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25862375

RESUMEN

Extracellular vesicles (EVs), including exosomes, microvesicles and apoptotic bodies, participate in intercellular communication, and particularly, in paracrine and endocrine signalling. The EVs and their specific contents have been considered hallmarks of different diseases. It has been recently discovered that EVs can co-transport nucleic acids such as DNAs, ribosomal RNAs, circular RNAs (circRNAs), long noncoding RNAs (lnRNAs) and microRNAs (miRNAs). miRNAs are important regulators of gene expression at the post-transcriptional level, although they may also play other roles. Recent evidence supports the hypothesis that miRNAs can activate Toll-like receptors (TLRs) under certain circumstances. TLRs belong to a multigene family of immune system receptors and have been recently described in the nervous system. In the immune system, TLRs are important for the recognition of the invading microorganisms, whereas in the nervous system, they recognise endogenous ligands released by undifferentiated or necrotic/injured cells. In the neuronal disease field, TLRs activity has been associated with amyotrophic lateral sclerosis (ALS), stroke, Alzheimer's and Parkinson's disease. Herein, we reviewed the current knowledge of the relationship between miRNA release by EVs and the inflammation signalling triggered by TLRs in neighbouring cells or during long-distance cell-to-cell communication. We highlight novel aspects of this communication mechanism, offering a valuable insight into such pathways in health and disease.


Asunto(s)
Encefalopatías/metabolismo , Exosomas/metabolismo , MicroARNs/metabolismo , Receptores Toll-Like/metabolismo , Animales , Vesículas Extracelulares/metabolismo , Humanos , Transporte de ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...