Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nanomaterials (Basel) ; 14(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38727341

RESUMEN

The rough morphology at the growth surface results in the non-uniform distribution of indium composition, intentionally or unintentionally doped impurity, and thus impacts the performance of GaN-based optoelectronic and vertical power electronic devices. We observed the morphologies of unintentionally doped GaN homo-epitaxially grown via MOCVD and identified the relations between rough surfaces and the miscut angle and direction of the substrate. The growth kinetics under the effect of the Ehrlich-Schwoebel barrier were studied, and it was found that asymmetric step motions in samples with a large miscut angle or those grown at high temperature were the causes of step-bunching. Meandering steps were believed to be caused by surface free energy minimization for steps with wide terraces or deviating from the [11¯00] m-direction.

2.
Nanomaterials (Basel) ; 12(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35159822

RESUMEN

Growth behaviors of GaN on patterned GaN substrate were studied herein. Spiral and nucleation growth were observed after miscut-induced atomic steps disappeared. The morphology of nucleation growth at different temperature is explained by a multi-nucleation regime introducing critical supersaturation. Simulated results based on a step motion model successfully explain the growth behaviors on stripes. These findings can be applied to control the surface kinetics of devices such as laser diodes grown on patterned substrate.

3.
Nanomaterials (Basel) ; 11(11)2021 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-34835855

RESUMEN

This letter reports room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diodes. Unlike conventional distributed Bragg feedback laser diodes with hundreds of gratings, we employed only a few precisely defined slot gratings to narrow the linewidth and mitigate the negative effects of grating fabrication on the device performance. The slot gratings were incorporated into the ridge of conventional Fabry-Pérot cavity laser diodes. A subsequent wet etching in a tetramethyl ammonium hydroxide solution not only effectively removed the damages induced by the dry etching, but also converted the rough and tilted slot sidewalls into smooth and vertical ones. As a result, the threshold current was reduced by over 20%, and the reverse leakage current was decreased by over three orders of magnitude. Therefore, the room-temperature electrically pumped narrow-linewidth GaN-on-Si laser diode has been successfully demonstrated.

4.
Materials (Basel) ; 14(8)2021 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-33918874

RESUMEN

We have improved the material quality of the high indium composition InGaN/GaN multiple quantum wells (MQWs) grown on free-standing GaN substrates using the graded-indium-content superlattice. We found that by adopting a graded-indium-content superlattice structure, the spectral FWHM of the yellow emitting InGaN/GaN MQW was reduced from 181 meV to 160 meV, and the non-radiative recombination lifetime increased from 13 ns to 44 ns. Besides, the graded-indium-content superlattice can mitigate strain relaxation in high indium composition MQWs as shown by the TEM diffraction patterns.

5.
Opt Express ; 28(21): 32124-32131, 2020 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-33115175

RESUMEN

Very limited 1-3 pairs of quantum-wells (QWs) are preferred for GaN-based laser diodes (LDs), which require more careful engineering of the carrier transport than LEDs. In this work, the first-barrier doping level of QWs is found to significantly affect the carrier confinement and distribution for GaN-based LDs. The first-barrier doping exceeding 2×1018 cm-3 will make the bottom QW return to the parasitic state, yielding unexpected photons absorption and even Auger recombination. The underlying physical mechanism is discussed in terms of the calculated energy-band diagram, carrier confinement, and distribution. And all the experimental findings are consistent with the physical model.

6.
Opt Express ; 28(10): 15497-15504, 2020 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-32403576

RESUMEN

Parasitic substrate mode readily appears in GaN-based laser diodes (LDs) because of insufficient optical confinement, especially for green LDs. Substrate modes affect the behavior of a LD severely, including the laser beam quality, the optical output power, the longitudinal mode stability, and the maximum modulation speed. In this article, systematic studies on the n-cladding layer (CL) design to suppress the substrate mode of GaN-based green LDs were carried out. We established a contour map to describe the relationship between the optical confinement (determined by the thickness and the refractive index) of n-CL and the substrate mode intensity by simulating the near-field pattern and the far-field pattern. We found that it was difficult to obtain the Gaussian-shape far-field pattern using AlGaN as a cladding layer due to the appearance of cracks induced by tensile strain. However, this can be realized by introducing quaternary AlInGaN as a cladding layer since refractive index and strain can be tuned separately for quaternary alloy.

7.
Opt Express ; 28(8): 12201-12208, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-32403718

RESUMEN

Silicon photonics has been calling for an electrically pumped on-chip light source at room temperature for decades. A GaN-based microdisk laser diode with whispering gallery modes grown on Si is a promising candidate for compact on-chip light source. By suppressing the unintentional incorporation of carbon impurity in the p-type AlGaN cladding layer of the laser, we have significantly reduced the operation voltage and threshold current of the GaN-on-Si microdisk laser. Meanwhile the radius of the microdisk laser was shrunk to 8 µm to lower the thermal power. The overall junction temperature of the microdisk laser was effectively reduced. As a result, the first continuous-wave electrically pumped InGaN-based microdisk laser grown on Si was achieved at room temperature.

8.
Opt Express ; 27(18): 25943-25952, 2019 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-31510456

RESUMEN

High performance InGaN-based laser diodes (LDs) monolithically grown on Si is fundamentally interesting and highly desirable for photonics integration on Si platform. Suppression of point defects is of crucial importance to improve the device performance of InGaN-based LDs grown on Si. This work presents a detailed study on the impact of point defects, such as carbon (C) impurities and gallium vacancies (VGa), on the device characteristics of InGaN-based LDs grown on Si. By suppressing the VGa-related defect within the waveguide layers, reducing the thermal degradation of InGaN-based quantum wells, and controlling the C impurity concentrations within the thick p-type cladding layers, the as-fabricated InGaN-based LDs grown on Si exhibited a significantly reduced threshold current density of 2.25 kA/cm2 and an operation voltage of 4.7 V.

9.
Sci Rep ; 8(1): 7922, 2018 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-29784929

RESUMEN

Direct bandgap III-V semiconductor lasers grown on silicon (Si) are highly desired for monolithic integration with Si photonics. Fabrication of semiconductor lasers with a Fabry-Pérot cavity usually includes facet cleavage, however, that is not compatible with on-chip photonic integration. Etching as an alternative approach holds a great advantage in preparing cavity mirrors with no need of breaking wafer into bars. However, gallium nitride (GaN) sidewalls prepared by dry etching often have a large roughness and etching damages, which would cause mirror loss due to optical scattering and carrier injection loss because of surface non-radiative recombination. A wet chemical polishing process of GaN sidewall facets formed by dry etching was studied in detail to remove the etching damages and smooth the vertical sidewalls. The wet chemical polishing technique combined with dry etching was successfully applied to the on-wafer fabrication of cavity mirrors, which enabled the realization of room temperature electrically injected InGaN-based laser diodes grown on Si.

10.
Opt Express ; 26(4): 5043-5051, 2018 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-29475346

RESUMEN

Silicon photonics has been longing for an efficient on-chip light source that is electrically driven at room temperature. Microdisk laser featured with low-loss whispering gallery modes can emit directional lasing beam through a closely coupled on-chip waveguide efficiently, and hence is particularly suitable for photonics integration. The realization of electrically pumped III-nitride microdisk laser grown on Si has been impeded by the conventional undercut structure, poor material quality, and a limited quality of GaN microdisk formed by dry etching. Here we report a successful fabrication of room-temperature electrically pumped InGaN-based microdisk lasers grown on Si. A dramatic narrowing of the electroluminescence spectral line-width and a clear discontinuity in the slope of light output power plotted as a function of the injection current provide an unambiguous evidence of lasing. This is the first observation of electrically pumped lasing in InGaN-based microdisk lasers grown on Si at room temperature.

11.
Light Sci Appl ; 7: 13, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30839586

RESUMEN

Current laser-based display and lighting applications are invariably using blue laser diodes (LDs) grown on free-standing GaN substrates, which are costly and smaller in size compared with other substrate materials.1-3 Utilizing less expensive and large-diameter Si substrates for hetero-epitaxial growth of indium gallium nitride/gallium nitride (InGaN/GaN) multiple quantum well (MQW) structure can substantially reduce the cost of blue LDs and boost their applications. To obtain a high crystalline quality crack-free GaN thin film on Si for the subsequent growth of a blue laser structure, a hand-shaking structure was formed by inserting Al-composition step down-graded AlN/AlxGa1-xN buffer layers between GaN and Si substrate. Thermal degradation in InGaN/GaN blue MQWs was successfully suppressed with indium-rich clusters eliminated by introducing hydrogen during the growth of GaN quantum barriers (QBs) and lowering the growth temperature for the p-type AlGaN/GaN superlattice optical cladding layer. A continuous-wave (CW) electrically pumped InGaN/GaN quantum well (QW) blue (450 nm) LD grown on Si was successfully demonstrated at room temperature (RT) with a threshold current density of 7.8 kA/cm2.

12.
Opt Express ; 25(12): 13046-13054, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28788844

RESUMEN

We investigated the gain-switching properties of GaN-based ridge-waveguide lasers on free-standing GaN substrates with low-cost nanosecond current injection. It was observed that the output pulses with intense injection consisted of an isolated short pulse with a duration of around 50 ps at the high-energy side and a long steady-state component at the lower energy side independent of the electric pulse duration. The energy separation between the short pulse and steady-state component can be over 30 meV, favoring short-pulse generation with the spectral filtering technique. The duration of the steady-state component can be tuned freely by controlling the duration and voltage of the electric pulse, which is very useful for generating pulse-width-tunable optical pulses for various applications.

13.
Opt Express ; 25(1): 415-421, 2017 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-28085835

RESUMEN

By observing the morphology evolution of green InGaN/GaN quantum well (QW) and studying the catholuminescence (CL) property, we investigate indium-segregation-related defects that are formed at green InGaN/GaN QW interfaces. Meanwhile, we also propose the approach and suggest the mechanism to remove them for green InGaN/GaN QW grown on both GaN templates and free-standing GaN substrates. By engineering the interface of green InGaN/GaN QWs, we have achieved green laser diode (LD) structure with low threshold current density of 1.85 kA cm-2. The output power of the green LD is 58 mW at a current density of 6 kA cm-2 under continuous-wave operation at room temperature.

14.
Nanoscale Res Lett ; 11(1): 519, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27885621

RESUMEN

The polarization fields in c-plane InGaN/(In)GaN multiple quantum well (MQW) structures grown on sapphire substrate by metal-organic chemical vapor deposition are investigated in this paper. The indium composition in the quantum wells varies from 14.8 to 26.5% for different samples. The photoluminescence wavelengths are calculated theoretically by fully considering the related effects and compared with the measured wavelengths. It is found that when the indium content is lower than 17.3%, the measured wavelengths agree well with the theoretical values. However, when the indium content is higher than 17.3%, the measured ones are much shorter than the calculation results. This discrepancy is attributed to the reduced polarization field in the MQWs. For the MQWs with lower indium content, 100% theoretical polarization can be maintained, while, when the indium content is higher, the polarization field decreases significantly. The polarization field can be weakened down to 23% of the theoretical value when the indium content is 26.5%. Strain relaxation is excluded as the origin of the polarization reduction because there is no sign of lattice relaxation in the structures, judging by the X-ray diffraction reciprocal space mapping. The possible causes of the polarization reduction are discussed.

15.
Nanoscale Res Lett ; 6(1): 576, 2011 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-22040124

RESUMEN

We report the initial results of GaAs and GaInP solar cells grown by all solid-state molecular-beam-epitaxy (MBE) technique. For GaAs single-junction solar cell, with the application of AlInP as the window layer and GaInP as the back surface field layer, the photovoltaic conversion efficiency of 26% at one sun concentration and air mass 1.5 global (AM1.5G) is realized. The efficiency of 16.4% is also reached for GaInP solar cell. Our results demonstrate that the MBE-grown phosphide-contained III-V compound semiconductor solar cell can be quite comparable to the metal-organic-chemical-vapor-deposition-grown high-efficiency solar cell.

16.
J Interferon Cytokine Res ; 29(3): 161-70, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19196068

RESUMEN

In this study, we describe the creation of three interferon-alpha (IFN-alpha)8 mutants with markedly higher antiviral and antiproliferative activities in comparison with those of the wild-type (wt)IFN-alpha8, wtIFN-alpha2, and IFN-con1 using a phage display system. Sequence analysis showed that three out of the six hot-spot amino acid residues of wtIFN-alpha8 known to be important for the interaction with the IFN-alpha receptor-2 (IFNAR-2)-binding sites were substituted to other amino acids and the others remained. Although affinity analysis revealed that the dissociation constant (K(D)) of IFN-alpha8 mutants was almost the same with that of wtIFN-alpha8, furthermore, the rates of association (k(a)) and dissociation (k(d)) were relatively lower. These results suggest that changes in the surface electronic charge of amino acid residues lead to changes in binding affinity and kinetics (prolonged dissociation time) toward the IFNAR-2, resulting in the modification of the biological activity. Moreover, our results demonstrate that the molecular engineering of the IFN-alpha8 provides important insight into action of IFN and also it would be useful in the development of therapeutically prominent IFN preparations than those used in clinical practice.


Asunto(s)
Sustitución de Aminoácidos , Interferón-alfa/genética , Interferón-alfa/metabolismo , Receptor de Interferón alfa y beta/metabolismo , Antivirales/química , Antivirales/farmacología , Sitios de Unión/genética , Unión Competitiva , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Inhibidores de Crecimiento/química , Inhibidores de Crecimiento/farmacología , Células Hep G2 , Humanos , Interferón Tipo I/genética , Interferón Tipo I/metabolismo , Interferón Tipo I/farmacología , Interferón-alfa/farmacología , Cinética , Modelos Moleculares , Mutación , Biblioteca de Péptidos , Unión Proteica , Conformación Proteica , Proteínas Recombinantes , Virus Sindbis/efectos de los fármacos , Resonancia por Plasmón de Superficie , Células U937 , Virus de la Estomatitis Vesicular Indiana/efectos de los fármacos
17.
Opt Lett ; 32(18): 2726-8, 2007 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-17873949

RESUMEN

We have demonstrated successful two-photon excitation fluorescence bioimaging using a high-power pulsed all-semiconductor laser. Toward this purpose, we developed a pulsed light source consisting of a mode-locked laser diode and a two-stage diode laser amplifier. This pulsed light source provided optical pulses of 5 ps duration and having a maximum peak power of over 100 W at a wavelength of 800 nm and a repetition frequency of 500 MHz.


Asunto(s)
Aumento de la Imagen/instrumentación , Rayos Láser , Iluminación/instrumentación , Microscopía de Fluorescencia por Excitación Multifotónica/instrumentación , Diseño de Equipo , Análisis de Falla de Equipo , Iluminación/métodos , Semiconductores
18.
Biomed Res ; 27(5): 219-26, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17099286

RESUMEN

While interferon-alpha (IFN-alpha) subtypes share a common specific receptor composed of two subunits, interferon-alpha receptor (IFNAR)-1 and IFNAR-2, their subtype activities are exhibited via several intracellular signaling pathways and thus subsequently show different biological effects. Anti-proliferative effects of single treatment with IFN-alpha subtypes or 5-fluorouracil (FU), and of combined treatment with each IFN-alpha subtype and 5-FU were examined on three hepatocellular carcinoma cell lines, HepG2, HLE and PLC/PRF/5. HepG2 and PLC/PRF/5 cells were susceptible to the combination treatment, but HLE cells were not. Proliferation of PLC/PRF/5 cells was also inhibited by the IFN-alpha subtypes singly. In addition, apoptosis was observed in HepG2 cells upon treatment with 5-FU alone and with the combination treatment, and in PLC/PRF/5 cells after single treatment with the IFN-alpha subtypes and after the combination treatment. IFN-alpha subtypes induced cell cycle arrest in the G2/M phase in HepG2 and PLC/PRF/5. Analyses by Western blotting and immunoprecipitation revealed increased p53 phosphorylation in HepG2 and PLC/PRF/5 cells but not in HLE cells after combined treatment. Single treatment with IFN-alpha subtypes promoted p53 activation only in PLC/PRF/5 cells. These results propose that IFN-alpha subtypes induce cells to undergo apoptosis through p53 activation directly and indirectly, in collaboration with 5-FU, further suggesting the presence of distinct signal pathways for IFN-alpha-induced apoptosis.


Asunto(s)
Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Interferón-alfa/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Proteína p53 Supresora de Tumor/metabolismo , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Ciclo Celular/efectos de los fármacos , Procesos de Crecimiento Celular/efectos de los fármacos , Línea Celular Tumoral , Fluorouracilo/administración & dosificación , Humanos , Interferón-alfa/administración & dosificación , Interferón-alfa/clasificación , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Fosforilación/efectos de los fármacos
19.
Artículo en Inglés | MEDLINE | ID: mdl-16807121

RESUMEN

Torpor-arousal cycles, one of the inherent features in hibernators, are associated with a rapid increase in body temperature and respiration, and it would lead to elevation of reactive oxygen species (ROS) generation. However, hibernators apparently tolerate this oxidative stress. We have observed in Syrian hamsters (Mesocricetus auratus) a maximal temperature shift and respiratory rate in mid- to late arousal (16-33 degrees C rectal temperature) from torpor. To examine plasma antioxidant status during arousal, we studied total superoxide radical-scavenging activity in plasma by electron spin resonance. The superoxide radical-scavenging activity reached a maximum at 32 degrees C, coincident with a peak in plasma uric acid levels, a ROS generation indicator. The up-regulated activity at 32 degrees C was attributable to the peak of the activity eluted at 260-kDa on gel-filtration chromatography, but was not to small antioxidant molecules such as ascorbate and alpha-tocopherol. The activity eluted at 260-kDa increased 3-fold at 32 degrees C compared with that of the torpid state, and was not detected either at 6 h after the onset of arousal or in the euthermic state. Moreover, the activity exhibited extracellular SOD-like properties: its induction in plasma by heparin injection and its affinity for heparin. Our results suggest that the 260-kDa extracellular SOD-like activity plays a role in the tolerance for the oxidative stress during arousal from torpor.


Asunto(s)
Antioxidantes/metabolismo , Nivel de Alerta/fisiología , Hibernación/fisiología , Estrés Oxidativo/fisiología , Superóxido Dismutasa/sangre , Animales , Ácido Ascórbico/sangre , Glucemia/análisis , Temperatura Corporal , Cricetinae , Ácidos Grasos no Esterificados/sangre , Femenino , Heparina/farmacología , Regulación hacia Arriba , Ácido Úrico/sangre , alfa-Tocoferol/sangre
20.
Biomed Res ; 26(4): 179-85, 2005 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16152734

RESUMEN

We have evaluated the effect of natural human interferon (IFN)-alpha on the growth of chlamydia trachomatis in human epithelial cells in vitro and revealed that IFN-alpha has reduced both growth and infectivity of C. trachomatis. The effect of IFN-alpha was reversed by the addition of exogenous L-tryptophan and iron to the culture medium, suggesting that antichlamydial effect of IFN-alpha was caused by depletion of intracellular tryptophan and iron, both of which are essential for chlamydial growth. When IFN-alpha was combined with another antichlamydial cytokines, IFN-gamma and tumor necrosis factor (TNF)-alpha, the effect was synergistically enhanced. Therefore, IFN-alpha would act coordinately with other cytokines such as IFN-gamma and TNF-alpha, and play an important role in host defense against infection and in the establishment of persistent chlamydial infection of host, in which the organism remains viable, but in a culture-negative state.


Asunto(s)
Antineoplásicos/farmacología , Infecciones por Chlamydia/metabolismo , Chlamydia trachomatis/crecimiento & desarrollo , Interferón-alfa/farmacología , Interferón gamma/farmacología , Factor de Necrosis Tumoral alfa/farmacología , Antineoplásicos/inmunología , Infecciones por Chlamydia/inmunología , Chlamydia trachomatis/inmunología , Sinergismo Farmacológico , Células HeLa , Humanos , Interferón-alfa/inmunología , Interferón gamma/inmunología , Factor de Necrosis Tumoral alfa/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA