Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Biomacromolecules ; 25(4): 2597-2606, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38483111

RESUMEN

The development of highly effective hemostatic materials with high biocompatibility and outstanding performance is vital to the field of biomaterials. In this study, we develop a hemostatic fiber material that exhibits high biocompatibility and excellent performance. By incorporating polydopamine (PDA) into the alkaline treatment of silk fibroin (SF), we achieve PDA-coated SF fibers with lengths that can be controlled by the alkaline concentration. The PDA coating significantly enhances the hemostatic ability of the silk fibers and exhibits superior performance in both in vitro and ex vivo experiments. By performing animal studies involving a mouse liver puncture model and a femoral vein incision model, we demonstrate the remarkable hemostatic capability of the PDA-coated SF fibers, as evidenced by the lower blood loss compared to that of a commercial hemostat powder. These findings highlight the potential of applying a PDA-assisted alkaline treatment to SF fibers to efficiently create hemostatic fibers with controllable lengths, which would be promising candidates for clinical hemostatic applications.


Asunto(s)
Fibroínas , Hemostáticos , Indoles , Ratones , Animales , Seda , Hemostáticos/farmacología , Polímeros/farmacología , Materiales Biocompatibles , Fibroínas/farmacología
2.
Biomacromolecules ; 25(2): 1153-1161, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38290478

RESUMEN

The skin, a crucial organ that protects the body, is vulnerable to external damage. Traditional tissue regeneration methods, including bulk hydrogels, aim to facilitate wound healing by interacting with host cells and providing a conducive environment. However, the nanoscale porosity of conventional hydrogels limits cell penetration and tissue regeneration. To overcome this, hydrogels composed of microgels have emerged as promising alternatives. In this study, we propose a granular hydrogel using decellularized tilapia skin. The tilapia skin-based microgels are cost-effective, immune-friendly, and have a high collagen content. Microgels based on the decellularized extracellular matrix of tilapia were successfully fabricated by using microfluidics. Through the assembly of these microgels using adhesive hyaluronic acid-catechol, the resulting 3D granular hydrogel scaffold facilitated enhanced cell growth, accelerated cell differentiation, and successful healing of full-thickness wounds in a mouse model. This study reveals the potential of tilapia skin-based granular hydrogel assembly in wound healing, overcoming conventional hydrogel limits.


Asunto(s)
Microgeles , Tilapia , Ratones , Animales , Hidrogeles/farmacología , Cicatrización de Heridas , Piel
3.
Materials (Basel) ; 16(2)2023 Jan 13.
Artículo en Inglés | MEDLINE | ID: mdl-36676522

RESUMEN

Synthetic tough hydrogels have received attention because they could mimic the mechanical properties of natural hydrogels, such as muscle, ligament, tendon, and cartilage. Many recent studies suggest various approaches to enhance the mechanical properties of tough hydrogels. However, directly comparing each hydrogel property in different reports is challenging because various testing specimen shapes/sizes were employed, affecting the experimental mechanical property values. This study demonstrates how the specimen geometry-the lengths and width of the reduced section-of a tough double-network hydrogel causes differences in experimental tensile mechanical values. In particular, the elastic modulus was systemically compared using eleven specimens of different shapes and sizes that were tensile tested, including a rectangle, ASTM D412-C and D412-D, JIS K6251-7, and seven customized dumbbell shapes with various lengths and widths of the reduced section. Unlike the rectangular specimen, which showed an inconsistent measurement of mechanical properties due to a local load concentration near the grip, dumbbell-shaped specimens exhibited a stable fracture at the reduced section. The dumbbell-shaped specimen with a shorter gauge length resulted in a smaller elastic modulus. Moreover, a relationship between the specimen dimension and measured elastic modulus value was derived, which allowed for the prediction of the experimental elastic modulus of dumbbell-shaped tough hydrogels with different dimensions. This study conveys a message that reminds the apparent experimental dependence of specimen geometry on the stress-strain measurement and the need to standardize the measurement of of numerous tough hydrogels for a fair comparison.

4.
ACS Biomater Sci Eng ; 4(10): 3498-3505, 2018 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-33450796

RESUMEN

The macroscale delivery system has been one of the practical platforms for a controlled delivery system by acting as a local depot close to the target tissue. In this study, we fabricated a macroporous alginate crygel incorporated with gold nanorods (GNRs) for the on-demand release of a chemotherapeutic drug from macroscale materials placed beside the target tumor. The macroporous crygel was prepared by the ice-crystal templating of a covalently crosslinked alginate hydrogel incorporated with GNRs. Mitoxantrone (MX), one of the potent anticancer drugs with a positive charge, was strongly adsorbed on the negative alginate chains of the cryogels. This system enabled a high loading of MX and a successful on-demand release of strongly bound MX from the GNR-loaded macroporous cryogels by near-infrared (NIR) irradiation by the dissociation of the interaction between the alginate backbone and MX. Cell viability after the NIR irradiation of the MX-loaded macroporous cryogel was significantly lower compared to that under no stimuli conditions. The in vivo test showed that repetitive NIR irradiations on the MX-loaded cryogel implanted near the tumor suppressed the tumor volume six times more than that of the control group. This simple approach to fabricate a macroporous cryogel capable of the on-demand release of bioactive cargos could be beneficial in various applications including cell, gene, and the other small molecule delivery systems.

5.
J Colloid Interface Sci ; 494: 389-396, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28171847

RESUMEN

Inverse opal hydrogels (IOHs) for cell culture were fabricated and optimized using calcium-crosslinked alginate microbeads as sacrificial template and gelatin as a matrix. In contrast to traditional three-dimensional (3D) scaffolds, the gelatin IOHs allowed the utilization of both the macropore surface and inner matrix for cell co-culture. In order to remove templates efficiently for the construction of 3D interconnected macropores and to maintain high cell viability during the template removal process using EDTA solution, various factors in fabrication, including alginate viscosity, alginate concentration, alginate microbeads size, crosslinking calcium concentration, and gelatin network density were investigated. Low viscosity alginate, lower crosslinking calcium ion concentration, and lower concentration of alginate and gelatin were found to obtain high viability of cells encapsulated in the gelatin matrix after removal of the alginate template by EDTA treatment by allowing rapid dissociation and diffusion of alginate polymers. Based on the optimized fabrication conditions, gelatin IOHs showed good potential as a cell co-culture system, applicable to tissue engineering and cancer research.


Asunto(s)
Alginatos/química , Técnicas de Cultivo de Célula/instrumentación , Técnicas de Cultivo de Célula/métodos , Hidrogeles/química , Hidrogeles/síntesis química , Calcio/química , Supervivencia Celular , Técnicas de Cocultivo/instrumentación , Técnicas de Cocultivo/métodos , Ácido Edético/química , Gelatina/química , Humanos , Microesferas , Ingeniería de Tejidos , Andamios del Tejido/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...