Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Clin Biochem Nutr ; 74(2): 97-107, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38510679

RESUMEN

Glutathione peroxidase 4 (GPx4) is an antioxidant enzyme that reduces phospholipid hydroperoxide. Studies have reported that the loss of GPx4 activity through anticancer drugs leads to ferroptosis, an iron-dependent lipid peroxidation-induced cell death. In this study, we established Tamoxifen-inducible GPx4-deficient Mouse embryonic fibroblast (MEF) cells (ETK1 cells) and found that Tamoxifen-inducible gene disruption of GPx4 induces slow cell death at ~72 h. In contrast, RSL3- or erastin-induced ferroptosis occurred quickly within 24 h. Therefore, we investigated the differences in these mechanisms between GPx4 gene disruption-induced cell death and RSL3- or erastin-induced ferroptosis. We found that GPx4-deficiency induced lipid peroxidation at 24 h in Tamoxifen-treated ETK1 cells, which was not suppressed by iron chelators, although lipid peroxidation in RSL3- or erastin-treated cells induced ferroptosis that was inhibited by iron chelators. We revealed that GPx4-deficient cell death was MEK1-dependent but RSL3- or erastin-induced ferroptosis was not, although MEK1/2 inhibitors suppressed both GPx4-deficient cell death and RSL3- or erastin-induced ferroptosis. In GPx4-deficient cell death, the phosphorylation of MEK1/2 and ERK2 was observed 39 h after lipid peroxidation, but ERK1 was not phosphorylated. Selective inhibitors of ERK2 inhibited GPx4-deficient cell death but not in RSL3- or erastin-induced cell death. These findings suggest that iron-independent lipid peroxidation due to GPx4 disruption induced cell death via the activation of MEK1/ERK2 as a downstream signal of lipid peroxidation in Tamoxifen-treated ETK1 cells. This indicates that GPx4 gene disruption induces slow cell death and involves a different pathway from RSL3- and erastin-induced ferroptosis in ETK1 cells.

2.
J Am Heart Assoc ; 13(1): e031219, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38158218

RESUMEN

BACKGROUND: Ferroptosis, an iron-dependent form of regulated cell death, is a major cell death mode in myocardial ischemia reperfusion (I/R) injury, along with mitochondrial permeability transition-driven necrosis, which is inhibited by cyclosporine A (CsA). However, therapeutics targeting ferroptosis during myocardial I/R injury have not yet been developed. Hence, we aimed to investigate the therapeutic efficacy of deferasirox, an iron chelator, against hypoxia/reoxygenation-induced ferroptosis in cultured cardiomyocytes and myocardial I/R injury. METHODS AND RESULTS: The effects of deferasirox on hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis were examined in cultured cardiomyocytes. In a mouse model of I/R injury, the infarct size and adverse cardiac remodeling were examined after treatment with deferasirox, CsA, or both in combination. Deferasirox suppressed hypoxia- or hypoxia/reoxygenation-induced iron overload in the endoplasmic reticulum, lipid peroxidation, and ferroptosis in cultured cardiomyocytes. Deferasirox treatment reduced iron levels in the endoplasmic reticulum and prevented increases in lipid peroxidation and ferroptosis in the I/R-injured myocardium 24 hours after I/R. Deferasirox and CsA independently reduced the infarct size after I/R injury to a similar degree, and combination therapy with deferasirox and CsA synergistically reduced the infarct size (infarct area/area at risk; control treatment: 64±2%; deferasirox treatment: 48±3%; CsA treatment: 48±4%; deferasirox+CsA treatment: 37±3%), thereby ameliorating adverse cardiac remodeling on day 14 after I/R. CONCLUSIONS: Combination therapy with deferasirox and CsA may be a clinically feasible and effective therapeutic approach for limiting I/R injury and ameliorating adverse cardiac remodeling after myocardial infarction.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Infarto del Miocardio , Isquemia Miocárdica , Daño por Reperfusión Miocárdica , Daño por Reperfusión , Ratones , Animales , Ciclosporina/farmacología , Daño por Reperfusión Miocárdica/metabolismo , Deferasirox/farmacología , Deferasirox/metabolismo , Deferasirox/uso terapéutico , Remodelación Ventricular , Miocitos Cardíacos/metabolismo , Infarto del Miocardio/metabolismo , Daño por Reperfusión/metabolismo , Hierro/metabolismo , Hipoxia/metabolismo , Sobrecarga de Hierro/metabolismo , Isquemia Miocárdica/metabolismo
4.
Sci Signal ; 15(758): eabn8017, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318618

RESUMEN

Clinical use of doxorubicin (DOX) is limited because of its cardiotoxicity, referred to as DOX-induced cardiomyopathy (DIC). Mitochondria-dependent ferroptosis, which is triggered by iron overload and excessive lipid peroxidation, plays a pivotal role in the progression of DIC. Here, we showed that DOX accumulated in mitochondria by intercalating into mitochondrial DNA (mtDNA), inducing ferroptosis in an mtDNA content-dependent manner. In addition, DOX disrupted heme synthesis by decreasing the abundance of 5'-aminolevulinate synthase 1 (Alas1), the rate-limiting enzyme in this process, thereby impairing iron utilization, resulting in iron overload and ferroptosis in mitochondria in cultured cardiomyocytes. Alas1 overexpression prevented this outcome. Administration of 5-aminolevulinic acid (5-ALA), the product of Alas1, to cultured cardiomyocytes and mice suppressed iron overload and lipid peroxidation, thereby preventing DOX-induced ferroptosis and DIC. Our findings reveal that the accumulation of DOX and iron in mitochondria cooperatively induces ferroptosis in cardiomyocytes and suggest that 5-ALA can be used as a potential therapeutic agent for DIC.


Asunto(s)
Ferroptosis , Sobrecarga de Hierro , Ratones , Animales , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , ADN Mitocondrial/metabolismo , Ácido Aminolevulínico/metabolismo , Doxorrubicina/farmacología , Mitocondrias/genética , Miocitos Cardíacos/metabolismo , Sobrecarga de Hierro/complicaciones , Sobrecarga de Hierro/metabolismo , Hierro/metabolismo , Hemo/metabolismo
5.
JACC Basic Transl Sci ; 7(8): 800-819, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36061338

RESUMEN

Ischemia-reperfusion (I/R) injury is a promising therapeutic target to improve clinical outcomes after acute myocardial infarction. Ferroptosis, triggered by iron overload and excessive lipid peroxides, is reportedly involved in I/R injury. However, its significance and mechanistic basis remain unclear. Here, we show that glutathione peroxidase 4 (GPx4), a key endogenous suppressor of ferroptosis, determines the susceptibility to myocardial I/R injury. Importantly, ferroptosis is a major mode of cell death in I/R injury, distinct from mitochondrial permeability transition (MPT)-driven necrosis. This suggests that the use of therapeutics targeting both modes is an effective strategy to further reduce the infarct size and thereby ameliorate cardiac remodeling after I/R injury. Furthermore, we demonstrate that heme oxygenase 1 up-regulation in response to hypoxia and hypoxia/reoxygenation degrades heme and thereby induces iron overload and ferroptosis in the endoplasmic reticulum (ER) of cardiomyocytes. Collectively, ferroptosis triggered by GPx4 reduction and iron overload in the ER is distinct from MPT-driven necrosis in both in vivo phenotype and in vitro mechanism for I/R injury. The use of therapeutics targeting ferroptosis in conjunction with cyclosporine A can be a promising strategy for I/R injury.

6.
J Cardiovasc Pharmacol ; 80(5): 690-699, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-35881422

RESUMEN

ABSTRACT: Doxorubicin (DOX) is an effective anti-cancer agent for various malignancies. Nevertheless, it has a side effect of cardiotoxicity, referred to as doxorubicin-induced cardiomyopathy (DIC), that is associated with a poorer prognosis. This cardiotoxicity limits the clinical use of DOX as a therapeutic agent for malignancies. Recently, ferroptosis, a form of regulated cell death induced by the accumulation of lipid peroxides, has been recognized as a major pathophysiology of DIC. Ethoxyquin is a lipophilic antioxidant widely used for food preservation and thus may be a potential therapeutic drug for preventing DIC. However, the efficacy of ethoxyquin against ferroptosis and DIC remains to be fully elucidated. Here, we investigated the inhibitory action of ethoxyquin against GPx4-deficient ferroptosis and its therapeutic efficacy against DOX-induced cell death in cultured cardiomyocytes and cardiotoxicity in a murine model of DIC. In cultured cardiomyocytes, ethoxyquin treatment effectively prevented GPx4-deficient ferroptosis. Ethoxyquin also prevented DOX-induced cell death, accompanied by the suppression of malondialdehyde (MDA) and mitochondrial lipid peroxides, which were induced by DOX. Furthermore, ethoxyquin significantly prevented DOX-induced cell death without any suppression of caspase cleavages representing apoptosis. In DIC mice, ethoxyquin treatment ameliorated cardiac impairments, such as contractile dysfunction and myocardial atrophy, and lung congestion. Ethoxyquin also suppressed serum lactate dehydrogenase and creatine kinase activities, decreased the levels of lipid peroxides such as MDA and acrolein, inhibited cardiac fibrosis, and reduced TUNEL-positive cells in the hearts of DIC mice. Collectively, ethoxyquin is a competent antioxidant for preventing ferroptosis in DIC and can be its prospective therapeutic drug.


Asunto(s)
Cardiomiopatías , Ferroptosis , Ratones , Animales , Cardiotoxicidad/prevención & control , Antioxidantes/uso terapéutico , Etoxiquina/metabolismo , Etoxiquina/farmacología , Etoxiquina/uso terapéutico , Peróxidos Lipídicos/metabolismo , Peróxidos Lipídicos/farmacología , Estrés Oxidativo , Doxorrubicina/toxicidad , Miocitos Cardíacos , Apoptosis , Cardiomiopatías/inducido químicamente , Cardiomiopatías/prevención & control , Cardiomiopatías/metabolismo
7.
J Pharm Sci ; 111(8): 2191-2200, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35461805

RESUMEN

Surfactants such as Poloxamer 188 (PX188) play an important role in controlling particle formation in biotherapeutic formulations due to interfacial stresses. This study demonstrates for the first time that hydrophobicity of PX188 is a potential critical material attribute (CMA) as far as control of visible particle (VP) formation is concerned. We have found that within PX188 lots satisfying pharmacopeial specifications, there is variability in material attributes such as hydrophobicity, as determined from their reversed-phase high-performance liquid chromatography profiles. However, it currently remains unknown how such variability in hydrophobicity of PX188 affects surfactant function and VP formation. Here, we compared the effect of seven PX188 lots in two monoclonal antibody drug product formulations under various stress conditions. Notably, proteinaceous VP formation was reduced while using a PX188 lot with higher hydrophobicity. Our findings emphasize the importance of monitoring lot-to-lot variability of PX188 and provide insight into potential CMA for improving and controlling material attributes of PX188 for use in liquid biotherapeutic formulations.


Asunto(s)
Anticuerpos Monoclonales , Poloxámero , Anticuerpos Monoclonales/química , Química Farmacéutica/métodos , Composición de Medicamentos/métodos , Tensoactivos/química
8.
J Biol Chem ; 298(4): 101824, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35288190

RESUMEN

Glutathione peroxidase 4 (GPx4) is known for its unique function in the direct detoxification of lipid peroxides in the cell membrane and as a key regulator of ferroptosis, a form of lipid peroxidation-induced nonapoptotic cell death. However, the cytosolic isoform of GPx4 is considered to play a major role in inhibiting ferroptosis in somatic cells, whereas the roles of the mitochondrial isoform of GPx4 (mGPx4) in cell survival are not yet clear. In the present study, we found that mGPx4 KO mice exhibit a cone-rod dystrophy-like phenotype in which loss of cone photoreceptors precedes loss of rod photoreceptors. Specifically, in mGPx4 KO mice, cone photoreceptors disappeared prior to their maturation, whereas rod photoreceptors persisted through maturation but gradually degenerated afterward. Mechanistically, we demonstrated that vitamin E supplementation significantly ameliorated photoreceptor loss in these mice. Furthermore, LC-MS showed a significant increase in peroxidized phosphatidylethanolamine esterified with docosahexaenoic acid in the retina of mGPx4 KO mice. We also observed shrunken and uniformly condensed nuclei as well as caspase-3 activation in mGPx4 KO photoreceptors, suggesting that apoptosis was prevalent. Taken together, our findings indicate that mGPx4 is essential for the maturation of cone photoreceptors but not for the maturation of rod photoreceptors, although it is still critical for the survival of rod photoreceptors after maturation. In conclusion, we reveal novel functions of mGPx4 in supporting development and survival of photoreceptors in vivo.


Asunto(s)
Fosfolípido Hidroperóxido Glutatión Peroxidasa , Células Fotorreceptoras Retinianas Conos , Células Fotorreceptoras Retinianas Bastones , Animales , Supervivencia Celular/genética , Ratones , Mitocondrias/enzimología , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Células Fotorreceptoras Retinianas Conos/citología , Células Fotorreceptoras Retinianas Conos/enzimología , Células Fotorreceptoras Retinianas Bastones/citología , Células Fotorreceptoras Retinianas Bastones/enzimología
10.
Chem Phys Lipids ; 233: 104992, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33058816

RESUMEN

Naturally sourced phospholipids are used in many liposomal pharmaceuticals. The present report describes a method to detect the effects of different egg yolk phosphatidylcholines (EPCs) on liposomal physicochemical properties. Five EPC-containing liposomes were prepared using five different EPCs obtained from different suppliers. There was no significant difference in purity between each EPC. The stiffness of the liposomes was examined via atomic force microscopy (AFM) in relation to the liposomal membrane permeability coefficient of encapsulated calcein after gel filtration, which is indicative of liposomal stability including the release of a hydrophilic drug from a liposome. Although the size of the liposome and the encapsulation efficiency of calcein did not significantly change with the type of EPC used, the liposome stiffness was found to vary depending on the EPC used, and liposomes with a similar stiffness were found to show a similar membrane permeability to calcein. Our results indicate the usefulness of stiffness measurement, using AFM as the analytical method, to detect material-derived differences in EPC-containing liposomes that affect drug release from the liposomes. Because drug release is one of the most important liposomal functions, combining this method with other analytical methods could be useful in selecting material for the development and quality control of EPC-containing liposomes.


Asunto(s)
Yema de Huevo/química , Fosfatidilcolinas/análisis , Animales , Hidrodinámica , Interacciones Hidrofóbicas e Hidrofílicas , Liposomas/química , Microscopía de Fuerza Atómica
11.
JCI Insight ; 5(9)2020 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-32376803

RESUMEN

Doxorubicin (DOX), a chemotherapeutic agent, induces a cardiotoxicity referred to as doxorubicin-induced cardiomyopathy (DIC). This cardiotoxicity often limits chemotherapy for malignancies and is associated with poor prognosis. However, the molecular mechanism underlying this cardiotoxicity is yet to be fully elucidated. Here, we show that DOX downregulated glutathione peroxidase 4 (GPx4) and induced excessive lipid peroxidation through DOX-Fe2+ complex in mitochondria, leading to mitochondria-dependent ferroptosis; we also show that mitochondria-dependent ferroptosis is a major cause of DOX cardiotoxicity. In DIC mice, the left ventricular ejection fraction was significantly impaired, and fibrosis and TUNEL+ cells were induced at day 14. Additionally, GPx4, an endogenous regulator of ferroptosis, was downregulated, accompanied by the accumulation of lipid peroxides, especially in mitochondria. These cardiac impairments were ameliorated in GPx4 Tg mice and exacerbated in GPx4 heterodeletion mice. In cultured cardiomyocytes, GPx4 overexpression or iron chelation targeting Fe2+ in mitochondria prevented DOX-induced ferroptosis, demonstrating that DOX triggered ferroptosis in mitochondria. Furthermore, concomitant inhibition of ferroptosis and apoptosis with ferrostatin-1 and zVAD-FMK fully prevented DOX-induced cardiomyocyte death. Our findings suggest that mitochondria-dependent ferroptosis plays a key role in progression of DIC and that ferroptosis is the major form of regulated cell death in DOX cardiotoxicity.


Asunto(s)
Cardiomiopatías , Doxorrubicina/toxicidad , Ferroptosis , Mitocondrias , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Animales Recién Nacidos , Cardiomiopatías/metabolismo , Cardiomiopatías/patología , Cardiotoxicidad , Células Cultivadas , Peroxidación de Lípido , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Miocitos Cardíacos , Ratas Sprague-Dawley , Función Ventricular Izquierda/efectos de los fármacos
12.
J Clin Biochem Nutr ; 66(2): 116-123, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32231407

RESUMEN

Glutathione peroxidase 4 (GPx4) is a unique antioxidant enzyme that directly reduces the phospholipid hydroperoxides (PLOOH) generated in biomembranes using glutathione as the reductant. We have previously reported that the Caenorhabditis elegans gpx-quad mutant, which lacks all homologous genes of GPx4 has a reduced lifespan compared with the wild-type. However, the mechanisms underlying the lifespan reduction remain unclear. By monitoring the change in PLOOH production with age, we found that PLOOH was elevated in the gpx-quad mutants compared with the wild-type during the reproductive period. Administration of vitamin E not only reduced the PLOOH content but also prolonged the lifespan of the gpx-quad mutants. In contrast, vitamin C did not extend the lifespan of the gpx-quad mutants. Interestingly, we found that the inhibition of lipid peroxidation by vitamin E during 5 to 10 days after hatching is important to extend the lifespan of C. elegans. These results suggest that production of PLOOH during the reproductive period strongly influences the lifespan of C. elegans.

13.
Am J Respir Cell Mol Biol ; 62(5): 554-562, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32017592

RESUMEN

To date, increasing evidence suggests the possible involvement of various types of cell death in lung diseases. The recognized regulated cell death includes necrotic cell death that is immunogenic, releasing damage-associated molecular patterns and driving tissue inflammation. Necroptosis is a well-understood form of regulated necrosis that is executed by RIPK3 (receptor-interacting protein kinase 3) and the pseudokinase MLKL (mixed lineage kinase domain-like protein). Ferroptosis is a newly described caspase-independent form of regulated necrosis that is characterized by the increase of detrimental lipid reactive oxygen species produced via iron-dependent lipid peroxidation. The role of these two cell death pathways differs depending on the disease, cell type, and microenvironment. Moreover, some experimental cell death models have demonstrated shared ferroptotic and necroptotic cell death and the synergistic effect of simultaneous inhibition. This review examines the role of regulated necrotic cell death, particularly necroptosis and ferroptosis, in lung disease pathogenesis in the context of recent insights into the roles of the key effector molecules of these two cell death pathways.


Asunto(s)
Ferroptosis , Enfermedades Pulmonares/patología , Necroptosis , Alarminas/metabolismo , Animales , Autofagia , Humanos , Necrosis
14.
J Immunol ; 203(8): 2076-2087, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31534007

RESUMEN

The imbalanced redox status in lung has been widely implicated in idiopathic pulmonary fibrosis (IPF) pathogenesis. To regulate redox status, hydrogen peroxide must be adequately reduced to water by glutathione peroxidases (GPx). Among GPx isoforms, GPx4 is a unique antioxidant enzyme that can directly reduce phospholipid hydroperoxide. Increased lipid peroxidation products have been demonstrated in IPF lungs, suggesting the participation of imbalanced lipid peroxidation in IPF pathogenesis, which can be modulated by GPx4. In this study, we sought to examine the involvement of GPx4-modulated lipid peroxidation in regulating TGF-ß-induced myofibroblast differentiation. Bleomycin-induced lung fibrosis development in mouse models with genetic manipulation of GPx4 were examined. Immunohistochemical evaluations for GPx4 and lipid peroxidation were performed in IPF lung tissues. Immunohistochemical evaluations showed reduced GPx4 expression levels accompanied by increased 4-hydroxy-2-nonenal in fibroblastic focus in IPF lungs. TGF-ß-induced myofibroblast differentiation was enhanced by GPx4 knockdown with concomitantly enhanced lipid peroxidation and SMAD2/SMAD3 signaling. Heterozygous GPx4-deficient mice showed enhancement of bleomycin-induced lung fibrosis, which was attenuated in GPx4-transgenic mice in association with lipid peroxidation and SMAD signaling. Regulating lipid peroxidation by Trolox showed efficient attenuation of bleomycin-induced lung fibrosis development. These findings suggest that increased lipid peroxidation resulting from reduced GPx4 expression levels may be causally associated with lung fibrosis development through enhanced TGF-ß signaling linked to myofibroblast accumulation of fibroblastic focus formation during IPF pathogenesis. It is likely that regulating lipid peroxidation caused by reduced GPx4 can be a promising target for an antifibrotic modality of treatment for IPF.


Asunto(s)
Fibrosis Pulmonar Idiopática/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Animales , Bleomicina , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Humanos , Fibrosis Pulmonar Idiopática/inducido químicamente , Fibrosis Pulmonar Idiopática/patología , Peroxidación de Lípido , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Miofibroblastos/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/deficiencia , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Factor de Crecimiento Transformador beta/metabolismo
15.
Mol Ther Nucleic Acids ; 17: 819-828, 2019 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-31454678

RESUMEN

Currently approved therapies for age-related macular degeneration (AMD) are inhibitors against vascular endothelial growth factor (VEGF), which is a major contributor to the pathogenesis of neovascular AMD (nAMD). Intravitreal injections of anti-VEGF drugs have shown dramatic visual benefits for AMD patients. However, a significant portion of AMD patients exhibit an incomplete response to therapy and, over the extended management course, can lose vision, with the formation of submacular fibrosis as one risk factor. We investigated a novel target for AMD treatments, fibroblast growth factor 2 (FGF2), which has been implicated in the pathophysiology of both angiogenesis and fibrosis in a variety of tissue and organ systems. The anti-FGF2 aptamer, RBM-007, was examined for treatment of nAMD in animal models. In in vivo studies conducted in mice and rats, RBM-007 was able to inhibit FGF2-induced angiogenesis, laser-induced choroidal neovascularization (CNV), and CNV with fibrosis. Pharmacokinetic studies of RBM-007 in the rabbit vitreous revealed high and relatively long-lasting profiles that are superior to other approved anti-VEGF drugs. The anti-angiogenic and anti-scarring dual action of RBM-007 holds promise as an additive or alternative therapy to anti-VEGF treatments for nAMD.

16.
Nat Commun ; 10(1): 3145, 2019 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-31316058

RESUMEN

Ferroptosis is a necrotic form of regulated cell death (RCD) mediated by phospholipid peroxidation in association with free iron-mediated Fenton reactions. Disrupted iron homeostasis resulting in excessive oxidative stress has been implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD). Here, we demonstrate the involvement of ferroptosis in COPD pathogenesis. Our in vivo and in vitro models show labile iron accumulation and enhanced lipid peroxidation with concomitant non-apoptotic cell death during cigarette smoke (CS) exposure, which are negatively regulated by GPx4 activity. Treatment with deferoxamine and ferrostatin-1, in addition to GPx4 knockdown, illuminate the role of ferroptosis in CS-treated lung epithelial cells. NCOA4-mediated ferritin selective autophagy (ferritinophagy) is initiated during ferritin degradation in response to CS treatment. CS exposure models, using both GPx4-deficient and overexpressing mice, clarify the pivotal role of GPx4-regulated cell death during COPD. These findings support a role for cigarette smoke-induced ferroptosis in the pathogenesis of COPD.


Asunto(s)
Ferroptosis , Enfermedad Pulmonar Obstructiva Crónica/patología , Fumar , Animales , Células Epiteliales/patología , Humanos , Hierro/metabolismo , Peroxidación de Lípido , Ratones Endogámicos C57BL , Ratones Transgénicos , Coactivadores de Receptor Nuclear/genética , Fosfolípidos/metabolismo , Especies Reactivas de Oxígeno/metabolismo
17.
Cell Death Dis ; 10(6): 449, 2019 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-31209199

RESUMEN

Nonalcoholic steatohepatitis (NASH) is a metabolic liver disease that progresses from simple steatosis to the disease state of inflammation and fibrosis. Previous studies suggest that apoptosis and necroptosis may contribute to the pathogenesis of NASH, based on several murine models. However, the mechanisms underlying the transition of simple steatosis to steatohepatitis remain unclear, because it is difficult to identify when and where such cell deaths begin to occur in the pathophysiological process of NASH. In the present study, our aim is to investigate which type of cell death plays a role as the trigger for initiating inflammation in fatty liver. By establishing a simple method of discriminating between apoptosis and necrosis in the liver, we found that necrosis occurred prior to apoptosis at the onset of steatohepatitis in the choline-deficient, ethionine-supplemented (CDE) diet model. To further investigate what type of necrosis is involved in the initial necrotic cell death, we examined the effect of necroptosis and ferroptosis inhibition by administering inhibitors to wild-type mice in the CDE diet model. In addition, necroptosis was evaluated using mixed lineage kinase domain-like protein (MLKL) knockout mice, which is lacking in a terminal executor of necroptosis. Consequently, necroptosis inhibition failed to block the onset of necrotic cell death, while ferroptosis inhibition protected hepatocytes from necrotic death almost completely, and suppressed the subsequent infiltration of immune cells and inflammatory reaction. Furthermore, the amount of oxidized phosphatidylethanolamine, which is involved in ferroptosis pathway, was increased in the liver sample of the CDE diet-fed mice. These findings suggest that hepatic ferroptosis plays an important role as the trigger for initiating inflammation in steatohepatitis and may be a therapeutic target for preventing the onset of steatohepatitis.


Asunto(s)
Ferroptosis , Hígado/patología , Enfermedad del Hígado Graso no Alcohólico/patología , Animales , Apoptosis/efectos de los fármacos , Tetracloruro de Carbono/toxicidad , Cromanos/farmacología , Citocinas/metabolismo , Dieta , Etionina , Ferroptosis/efectos de los fármacos , Hepatitis/inmunología , Hepatitis/metabolismo , Hepatocitos/citología , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Quelantes del Hierro/farmacología , Hígado/citología , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Necroptosis/efectos de los fármacos , Necrosis , Enfermedad del Hígado Graso no Alcohólico/inducido químicamente , Enfermedad del Hígado Graso no Alcohólico/metabolismo
18.
FASEB Bioadv ; 1(2): 67-80, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-32123822

RESUMEN

Hepatitis B virus (HBV) is a hepatotropic DNA virus causing hepatic diseases such as chronic hepatitis, liver cirrhosis, and hepatocellular carcinoma. To study HBV, human hepatoma HepG2 cells are currently used as an HBV infectious cell culture model worldwide. HepG2 cells exhibit susceptibility to HBV by exogenously expressing sodium taurocholate cotransporting polypeptide (NTCP). We herein demonstrated that human immortalized hepatocyte NKNT-3 cells exhibited susceptibility to HBV by exogenously expressing NTCP (NKNT-3/NTCP cells). By comparing cyclic GMP-AMP synthetase (cGAS)-stimulator of interferon genes (STING) signaling pathway in several NKNT-3/NTCP cell-derived cell clones, we found that STING was highly expressed in cell clones exhibiting resistance but not susceptibility to HBV. High-level expression of STING was implicated in HBV-triggered induction of type III IFN and a pro-inflammatory cytokine, IL-6. In contrast, RNAi-mediated knockdown of STING inhibited type III IFN induction and restored the levels of HBV total transcript in an HBV-infected cell clone exhibiting resistance to HBV. These results suggest that STING regulates susceptibility to HBV by its expression levels. STING may thus be a novel target for anti-HBV strategies.

19.
FEBS J ; 286(1): 124-138, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30387556

RESUMEN

d-Aspartate oxidase (DDO) is a degradative enzyme that acts stereospecifically on free acidic D-amino acids such as d-aspartate and d-glutamate. d-Aspartate plays an important role in regulating neurotransmission, developmental processes, hormone secretion, and reproductive functions in mammals. In contrast, the physiological role of d-glutamate in mammals remains unclear. In Caenorhabditis elegans, the enzyme responsible for in vivo metabolism of d-glutamate is DDO-3, one of the three DDO isoforms, which is also required for normal self-fertility, hatching, and lifespan. In general, eukaryotic DDOs localize to subcellular peroxisomes in a peroxisomal targeting signal type 1 (PTS1)-dependent manner. However, DDO-3 does not contain a PTS1, but instead has a putative N-terminal signal peptide (SP). In this study, we found that DDO-3 is a secreted DDO, the first such enzyme to be described in eukaryotes. In hermaphrodites, DDO-3 was secreted from the proximal gonadal sheath cells in a SP-dependent manner and transferred to the oocyte surface. In males, DDO-3 was secreted from the seminal vesicle into the seminal fluid in a SP-dependent manner during mating with hermaphrodites. In both sexes, DDO-3 was secreted from the cells where it was produced into the body fluid and taken up by scavenger coelomocytes. Full-length DDO-3 transgene rescued all phenotypes elicited by the deletion of ddo-3, whereas a DDO-3 transgene lacking the putative SP did not. Together, these results indicate that secretion of DDO-3 is essential for its physiological functions.


Asunto(s)
Ácido Aspártico/metabolismo , Caenorhabditis elegans/enzimología , Caenorhabditis elegans/crecimiento & desarrollo , D-Aspartato Oxidasa/metabolismo , Embrión no Mamífero/citología , Reproducción , Animales , Caenorhabditis elegans/embriología , D-Aspartato Oxidasa/genética , Embrión no Mamífero/enzimología , Embrión no Mamífero/fisiología , Fertilidad , Longevidad , Mamíferos , Nariz/fisiología
20.
Nat Microbiol ; 4(2): 258-268, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455472

RESUMEN

Crosstalk between the autonomic nervous system and the immune system by means of the sympathetic and parasympathetic pathways is a critical process in host defence. Activation of the sympathetic nervous system results in the release of catecholamines as well as neuropeptide Y (NPY). Here, we investigated whether phagocytes are capable of the de novo production of NPY, as has been described for catecholamines. We show that the synthesis of NPY and its Y1 receptor (Y1R) is increased in phagocytes in lungs following severe influenza virus infection. The genetic deletion of Npy or Y1r specifically in phagocytes greatly improves the pathology of severe influenza virus infection, which is characterized by excessive virus replication and pulmonary inflammation. Mechanistically, it is the induction of suppressor of cytokine signalling 3 (SOCS3) via NPY-Y1R activation that is responsible for impaired antiviral response and promoting pro-inflammatory cytokine production, thereby enhancing the pathology of influenza virus infection. Thus, direct regulation of the NPY-Y1R-SOCS3 pathway on phagocytes may act as a fine-tuner of an innate immune response to virus infection, which could be a therapeutic target for lethal influenza virus infection.


Asunto(s)
Virus de la Influenza A/patogenicidad , Pulmón/patología , Neuropéptido Y/metabolismo , Infecciones por Orthomyxoviridae/patología , Fagocitos/metabolismo , Animales , Citocinas/metabolismo , Eliminación de Gen , Interacciones Huésped-Patógeno , Virus de la Influenza A/fisiología , Pulmón/inmunología , Pulmón/virología , Ratones , Neuropéptido Y/genética , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Fagocitos/patología , Fagocitos/virología , Receptores de Neuropéptido Y/genética , Receptores de Neuropéptido Y/metabolismo , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Análisis de Supervivencia , Transcripción Genética , Replicación Viral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA