Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
J Atheroscler Thromb ; 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38508740

RESUMEN

AIMS: Paraoxonase 1 (PON1) binds to high-density lipoprotein (HDL) and protects against atherosclerosis. However, the relationship between functional PON1 Q192R polymorphism, which is associated with the hydrolysis of paraoxon (POXase activity) and atherosclerotic cardiovascular disease (ASCVD), remains controversial. As the effect of PON1 Q192R polymorphism on the HDL function is unclear, we investigated the relationship between this polymorphism and the cholesterol efflux capacity (CEC), one of the biological functions of HDL, in association with the PON1 activity. METHODS: The relationship between PON1 Q192R polymorphisms and CEC was investigated retrospectively in 150 subjects without ASCVD (50 with the PON1 Q/Q genotype, 50 with the Q/R genotype, and 50 with the R/R genotype) who participated in a health screening program. The POXase and arylesterase (AREase: hydrolysis of aromatic esters) activities were used as measures of the PON1 activity. RESULTS: The AREase activity was positively correlated with CEC independent of the HDL cholesterol levels. When stratified by the PON1 Q192R genotype, the POXase activity was also positively correlated with CEC independent of HDL cholesterol. PON1 Q192R R/R genotype carriers had a lower CEC than Q/Q or Q/R genotype carriers, despite having a higher POXase activity. Moreover, in a multiple regression analysis, the PON1 Q192R genotype was associated with the degree of CEC, independent of the HDL cholesterol and POXase activity. CONCLUSIONS: The PON1 Q192R R allele is associated with reduced CEC in Japanese people without ASCVD. Further studies on the impact of this association on the severity of atherosclerosis and ASCVD development are thus called for.

2.
J Pharm Sci ; 112(7): 1975-1984, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37019360

RESUMEN

Fluphenazine (FPZ) decanoate, an ester-type prodrug formulated as a long-acting injection (LAI), is used in the treatment of schizophrenia. FPZ enanthate was also developed as an LAI formulation, but is no longer in use clinically because of the short elimination half-life of FPZ, the parent drug, after intramuscular injection. In the present study, the hydrolysis of FPZ prodrugs was evaluated in human plasma and liver to clarify the reason for this difference in elimination half-lives. FPZ prodrugs were hydrolyzed in human plasma and liver microsomes. The rate of hydrolysis of FPZ enanthate in human plasma and liver microsomes was 15-fold and 6-fold, respectively, faster than that of FPZ decanoate. Butyrylcholinesterase (BChE) and human serum albumin (HSA) present in human plasma, and two carboxylesterase (CES) isozymes, hCE1 and hCE2, expressed in ubiquitous organs including liver, were mainly responsible for the hydrolysis of FPZ prodrugs. FPZ prodrugs may not be bioconverted in human skeletal muscle at the injection site because of lack of expression of BChE and CESs in muscle. Interestingly, although FPZ was a poor substrate for human P-glycoprotein, FPZ caproate was a good substrate. In conclusion, it is suggested that the shorter elimination half-life of FPZ following administration of FPZ enanthate compared with FPZ decanoate can be attributed to the more rapid hydrolysis of FPZ enanthate by BChE, HSA and CESs.


Asunto(s)
Flufenazina , Profármacos , Humanos , Flufenazina/uso terapéutico , Profármacos/metabolismo , Inyecciones Intramusculares , Butirilcolinesterasa , Decanoatos , Heptanoatos
3.
Biol Pharm Bull ; 45(10): 1544-1552, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36184514

RESUMEN

Esmolol is indicated for the acute and temporary control of ventricular rate due to its rapid onset of action and elimination at a rate greater than cardiac output. This rapid elimination is achieved by the hydrolysis of esmolol to esmolol acid. It has previously been reported that esmolol is hydrolyzed in the cytosol of red blood cells (RBCs). In order to elucidate the metabolic tissues and enzymes involved in the rapid elimination of esmolol, a hydrolysis study was performed using different fractions of human blood and liver. Esmolol was slightly hydrolyzed by washed RBCs and plasma proteins while it was extensively hydrolyzed in plasma containing white blood cells and platelets. The negligible hydrolysis of esmolol in RBCs is supported by its poor hydrolysis by esterase D, the sole cytosolic esterase in RBCs. In human liver microsomes, esmolol was rapidly hydrolyzed according to Michaelis-Menten kinetics, and its hepatic clearance, calculated by the well-stirred model, was limited by hepatic blood flow. An inhibition study and a hydrolysis study using individual recombinant esterases showed that human carboxylesterase 1 isozyme (hCE1) is the main metabolic enzyme of esmolol in both white blood cells and human liver. These studies also showed that acyl protein thioesterase 1 (APT1) is involved in the cytosolic hydrolysis of esmolol in the liver. The hydrolysis of esmolol by hCE1 and APT1 also results in its pulmonary metabolism, which might be a reason for its high total clearance (170-285 mL/min/kg bodyweight), 3.5-fold greater than cardiac output (80.0 mL/min/kg bodyweight).


Asunto(s)
Esterasas , Propanolaminas , Hidrolasas de Éster Carboxílico/metabolismo , Humanos , Hidrólisis , Inyecciones Intravenosas , Isoenzimas , Microsomas Hepáticos/metabolismo , Propanolaminas/farmacología
4.
Mol Pharm ; 19(7): 2279-2286, 2022 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-35635006

RESUMEN

The effectiveness of protein and peptide pharmaceuticals depends essentially on their intrinsic pharmacokinetics. Small-sized pharmaceuticals in particular often suffer from short serum half-lives due to rapid renal clearance. To improve the pharmacokinetics by association with serum albumin (SA) in vivo, we generated an SA-binding tag of a helix-loop-helix (HLH) peptide to be linked with protein pharmaceuticals. For use in future preclinical studies, screening of yeast-displayed HLH peptide libraries against human SA (HSA) and mouse SA (MSA) was alternately repeated to give the SA-binding peptide AY-VE, which exhibited cross-binding activities to HSA and MSA with KD of 65 and 20 nM, respectively. As a proof of concept, we site-specifically conjugated peptide AY-VE with insulin to examine its bioactivity in vivo. In mouse bioassay monitoring the blood glucose level, the AY-VE conjugate was found to have a prolonged hypoglycemic effect for 12 h. The HLH peptide tag is a general platform for extending the bioactivity of therapeutic peptides or proteins.


Asunto(s)
Péptidos , Albúmina Sérica Humana , Animales , Semivida , Humanos , Ratones , Péptidos/farmacocinética , Saccharomyces cerevisiae/metabolismo , Albúmina Sérica , Albúmina Sérica Humana/metabolismo
5.
Chem Pharm Bull (Tokyo) ; 68(11): 1117-1120, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33132380

RESUMEN

Zerumbone is a multifunctional compound which shows various biological activities, such as antitumor activity, anti-inflammatory activity, antiulcer activity, etc. However, to use Zerumbone as functional foods or medicines, its pharmaceutical properties such as solubility should be improved. In the present study, we prepared its inclusion complexes with various cyclodextrin (CyD) derivatives, and evaluated their solubility, release profile of the drug and cytotoxic activity. Among 11 CyDs, sulfobutylether (SBE)-ß-CyD showed the highest solubilizing effect for Zerumbone. Phase solubility diagrams of SBE-ß-CyD/Zerumbone in 10% methanol solution showed AL type, and the stability constant was 756 M-1. SBE-ß-CyD also formed the solid complex with Zerumbone by kneading for 90 min. Importantly, the dissolution rate of Zerumbone was improved by complexation with SBE-ß- and hydroxypropyl (HP)-ß-CyDs, and its supersaturation was maintained for several hours. The solubilizing effects by SBE-ß-CyD was greater than that of HP-ß-CyD. Moreover, SBE-ß-CyD/Zerumbone complex also retained the cytotoxic activity of Zerumbone. These results suggest that CyDs, especially SBE-ß-CyD, were useful to improve the solubility of Zerumbone.


Asunto(s)
Ciclodextrinas/química , Sesquiterpenos/química , Antineoplásicos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacología , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Composición de Medicamentos , Humanos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacología , Solubilidad
6.
Drug Metab Dispos ; 48(3): 146-152, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31836607

RESUMEN

In contrast to a single human carboxylesterase 2 (CES2) isozyme (hCE2), three CES2 genes have been identified in cynomolgus monkeys: mfCES2A, mfCES2B, and mfCES2C . Although mfCES2A protein is expressed in several organs, mfCES2B is a pseudogene and the phenotype of the mfCES2C gene has not yet been clarified in tissues. In previous studies, we detected an unidentified esterase in the region of CES2 mobility upon nondenaturing PAGE analysis of monkey intestinal microsomes, which showed immunoreactivity for anti-mfCES2A antibody. The aim of the present study was to identify this unidentified esterase from monkey small intestine. The esterase was separated on nondenaturing PAGE gel and digested in-gel with trypsin. The amino acid sequences of fragmented peptides were analyzed by tandem mass spectrometry. The unidentified esterase was shown to be identical to mfCES2C (XP_015298642.1, predicted from the genome sequence data). mfCES2C consists of 559 amino acid residues and shows approximately 90% homology with mfCES2A (561 amino acid residues). In contrast to the ubiquitous expression of mfCES2A, mfCES2C is only expressed in the small intestine, kidney, and skin. The hydrolytic properties of recombinant mfCES2C, expressed in HEK293 cells, with respect to p-nitrophenyl derivatives, 4-methylumbelliferyl acetate, and irinotecan were similar to those of recombinant mfCES2A. However, mfCES2C showed a hydrolase activity for O-n-valeryl propranolol higher than mfCES2A. It is concluded that the previously unidentified monkey intestinal CES2 is mfCES2C, which shows different hydrolytic properties to mfCES2A, depending on the substrate. SIGNIFICANCE STATEMENT: In the present research, we determined that mfCES2C, a novel monkey CES2 isozyme, is expressed in the small intestine and kidney of the cynomolgus monkey. Interestingly, mfCES2C showed a relatively wide substrate specificity for ester-containing compounds. These findings may, in early stages of drug development, support the use of in vitro-to-in vivo extrapolation for the intestinal hydrolysis of ester drugs in the cynomolgus monkey.


Asunto(s)
Carboxilesterasa/metabolismo , Intestino Delgado/metabolismo , Isoenzimas/metabolismo , Macaca fascicularis/metabolismo , Secuencia de Aminoácidos , Aminoácidos , Animales , Hidrolasas de Éster Carboxílico/metabolismo , Línea Celular , Células HEK293 , Humanos , Hidrólisis , Intestino Delgado/efectos de los fármacos , Irinotecán/farmacología , Microsomas/metabolismo , Umbeliferonas
7.
J Pharm Sci ; 109(3): 1417-1420, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31837977

RESUMEN

The aim of this experiment was to study the effects of calcium ion on the hydrolysis of cationic and anionic substrate by human butyrylcholinesterase (HuBChE). The hydrolysis of aspirin, an anionic substrate, by HuBChE was markedly increased in the presence of increasing concentrations of calcium ion (∼20 mM), as shown by the increasing kcat (∼18-fold). Butyrylthiocholine (BTC), a cationic substrate, was biphasically hydrolyzed with substrate activation; a second BTC molecule caused a 3-fold increase in kcat. At both lower and higher concentrations of BTC, its hydrolysis by HuBChE was slightly slowed down by the addition of calcium ion. Other cationic substrates, propranolol derivatives with butyryl and valeryl groups, were R-preferentially hydrolyzed by HuBChE; the rate of hydrolysis of these compounds was nearly the same in the absence and presence of calcium ion. These data indicate differential effects of calcium ion on HuBChE activity with anionic and cationic substrates. Furthermore, during the hydrolysis of aspirin in the presence of calcium ions, we demonstrated the existence of 2 additional binding sites for calcium, with Km values of 1.8 and 5.9 mM. These binding sites exhibited much lower affinities than the EF-hand motif, previously identified as a high-affinity calcium-binding site.


Asunto(s)
Butirilcolinesterasa , Calcio , Sitios de Unión , Butirilcolinesterasa/metabolismo , Humanos , Hidrólisis , Cinética , Especificidad por Sustrato
8.
Yakugaku Zasshi ; 139(5): 837-844, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-31061351

RESUMEN

The hydrolysis activity and expression level of carboxylesterase (CES) in skin were compared with liver and intestine in the same individual of beagle dog and cynomolgus monkey, and their aging effects were studied. CES1 isozymes were mainly present in skin of both animals. The dermal hydrolysis activity was about 10 and 40% of hepatic activity in beagle dog and cynomolgus monkey, respectively. In beagle dog, the hydrolysis activity and the expression level of CES isozyme in liver and skin were nearly the same between 2- and 11-year-old individuals. On the other hand, the dermal hydrolase activity was lower in young individual than in old, in contrast to slight increase of hepatic and intestinal activity in old cynomolgus monkey. These differences by aging in cynomolgus monkey were related to the expression of CES1 proteins and their mRNA. Furthermore, mRNA level of human CES was investigated using total RNA of two individuals (63 and 85 years old). The two individuals showed approximately 2-fold higher expression of hCE2 than hCE1 in human skin.


Asunto(s)
Envejecimiento/metabolismo , Hidrolasas de Éster Carboxílico/genética , Hidrolasas de Éster Carboxílico/metabolismo , Hidrolasas/genética , Hidrolasas/metabolismo , Intestinos/enzimología , Hígado/enzimología , Piel/enzimología , Anciano de 80 o más Años , Animales , Perros , Femenino , Expresión Génica , Humanos , Hidrólisis , Isoenzimas/genética , Isoenzimas/metabolismo , Macaca fascicularis , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo
9.
J Pharm Sci ; 108(8): 2791-2797, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30954525

RESUMEN

The glycopyrrolate soft analog, SGM, designed to be easily hydrolyzed into the significantly less active zwitterionic metabolite, SGa, typifies soft drug that reduces systemic side effects (a problem often seen with traditional anticholinergics) following local administration. In this study, hydrolysis of 2R3'R-SGM, the highest pharmacologically active stereoisomer of SGM, was investigated in human and rat tissues. In both species, 2R3'R-SGM was metabolized to 2R3'R-SGa in plasma but was stable in liver and intestine. The half-life of 2R3'R-SGM was found to be 16.9 min and 9.8 min in human and rat plasma, respectively. The enzyme inhibition and stimulation experiments showed that plasma paraoxonase 1 (PON1) is responsible for the hydrolysis of 2R3'R-SGM in humans and rats. The PON1-mediated hydrolysis of 2R3'R-SGM was confirmed in the lipoprotein-rich fractions of human plasma. As PON1 is naturally attached to high-density lipoprotein, it might be absent in topical tissues where 2R3'R-SGM is applied, supporting its local stability and efficacy. The metabolic behavior of 2R3'R-SGM indicates that it is an ideal soft drug to be detoxified as soon as it moves into systemic circulation. Furthermore, the similarity of 2R3'R-SGM metabolism in humans and rats showed that the rat is a suitable animal for preclinical study.


Asunto(s)
Antagonistas Colinérgicos/metabolismo , Esterasas/metabolismo , Glicopirrolato/metabolismo , Animales , Proteínas Sanguíneas/metabolismo , Antagonistas Colinérgicos/sangre , Antagonistas Colinérgicos/química , Femenino , Glicopirrolato/análogos & derivados , Glicopirrolato/sangre , Humanos , Hidrólisis , Hígado/metabolismo , Masculino , Unión Proteica , Ratas , Ratas Wistar
10.
Yakugaku Zasshi ; 139(3): 411-414, 2019.
Artículo en Japonés | MEDLINE | ID: mdl-30828020

RESUMEN

The Academy of Pharmaceutical Science and Technology, Japan (APSTJ) has contributed to advances in pharmaceutical sciences and progress in formulation technologies. The APSTJ has some 2000 individual members including pharmacists, researchers, technologists, and representatives of regulatory authorities. Remarkably, more than 800 individual members are from the industry. The APSTJ holds an annual meeting and several conferences or seminars on pharmaceutical technologies and skills. It has also set up 13 focus groups (FGs), including some working energetically on medical pharmacy research. For example, the FG on "personalized formulations" aims to develop a suitable dosage form for each individual patient to confirm the concept of personalized medication. To provide opportunities to hear the voices of patients and understand their medical needs, another FG has started a hospital-based internship program for industrial researchers. Furthermore, as an activity of the Japan Agency for Medical Research and Development, an industry-university joint consortium for "pediatric drug formulations" was organized within an FG to develop suitable formulations for pediatric use. The mission of the APSTJ is to provide safe, effective, user-friendly drug products based on pharmaceutical science and technology and cooperation with clinical researchers and medical staff.


Asunto(s)
Biofarmacia/organización & administración , Sociedades Científicas/organización & administración , Tecnología Farmacéutica/organización & administración , Biofarmacia/tendencias , Formas de Dosificación , Composición de Medicamentos , Grupos Focales , Internado y Residencia , Japón , Pediatría , Medicina de Precisión , Tecnología Farmacéutica/tendencias
11.
J Biol Chem ; 294(17): 6659-6669, 2019 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-30833330

RESUMEN

IgE plays a key role in allergies by binding to allergens and then sensitizing mast cells through the Fc receptor, resulting in the secretion of proinflammatory mediators. Therefore, IgE is a major target for managing allergies. Previous studies have reported that oligomannose on IgE can be a potential target to inhibit allergic responses. However, enzymes that can modulate IgE activity are not yet known. Here, we found that the commercial receptor-destroying enzyme (RDE) (II) from Vibrio cholerae culture fluid specifically modulates IgE, but not IgG, and prevents the initiation of anaphylaxis. RDE (II)-treated IgE cannot access its binding site on bone marrow-derived mast cells, resulting in reduced release of histamine and cytokines. We also noted that RDE (II)-treated IgE could not induce passive cutaneous anaphylaxis in mouse ears. Taken together, we concluded that RDE (II) modulates the IgE structure and renders it unable to mediate allergic responses. To reveal the mechanism by which RDE (II) interferes with IgE activity, we performed lectin microarray analysis to unravel the relationship between IgE modulation and glycosylation. We observed that RDE (II) treatment significantly reduced the binding of IgE to Lycopersicon esculentum lectin, which recognizes poly-N-acetylglucosamine and poly-N-acetyllactosamine. These results suggest that RDE (II) specifically modulates branched glycans on IgE, thereby interfering with its ability to induce allergic responses. Our findings may provide a basis for the development of drugs to inhibit IgE activity in allergies.


Asunto(s)
Anafilaxia/prevención & control , Enzimas/metabolismo , Inmunoglobulina E/inmunología , Vibrio cholerae/enzimología , Anafilaxia/inmunología , Animales , Sitios de Unión , Células de la Médula Ósea/inmunología , Inmunoglobulina E/química , Inmunoglobulina E/metabolismo , Inmunoglobulina G/química , Inmunoglobulina G/inmunología , Inmunoglobulina G/metabolismo , Mastocitos/inmunología , Ratones , Polisacáridos/metabolismo , Inhibidores de Proteasas/farmacología , Conformación Proteica , Tripsina/metabolismo
12.
Xenobiotica ; 49(2): 247-255, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29384423

RESUMEN

Carboxylesterase (CES) is important for the detoxification of a wide range of drugs and xenobiotics. In this study, the hepatic level of CES2 mRNA was examined in cynomolgus macaques used widely in preclinical studies for drug metabolism. Three CES2 mRNAs were present in cynomolgus macaque liver. The mRNA level was highest for cynomolgus CES2A (formerly CES2v3), much lower for cynomolgus CES2B (formerly CES2v1) and extremely low for cynomolgus CES2C (formerly CES2v2). Most various transcript variants produced from cynomolgus CES2B gene did not contain a complete coding region. Thus, CES2A is the major CES2 enzyme in cynomolgus liver. A new transcript variant of CES2A, CES2Av2, was identified. CES2Av2 contained exon 3 region different from wild-type (CES2Av1). In cynomolgus macaques expressing only CES2Av2 transcript, CES2A contained the sequence of CES2B in exon 3 and vicinity, probably due to gene conversion. On genotyping, this CES2Av2 allele was prevalent in Indochinese cynomolgus macaques, but not in Indonesian cynomolgus or rhesus macaques. CES2Av2 recombinant protein showed similar activity to CES2Av1 protein for several substrates. It is concluded that CES2A is the major cynomolgus hepatic CES2, and new transcript variant, CES2Av2, has similar functions to CES2Av1.


Asunto(s)
Carboxilesterasa/metabolismo , Hígado/metabolismo , Macaca fascicularis/metabolismo , Alelos , Animales , Carboxilesterasa/genética , Femenino , Macaca fascicularis/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , Masculino , Variantes Farmacogenómicas , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN
13.
Xenobiotica ; 49(5): 569-576, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-29781759

RESUMEN

Loteprednol etabonate (LE) is a soft corticosteroid with two labile ester bonds at 17α- and 17ß-positions. Its corticosteroidal activity disappears upon hydrolysis of either ester bond. Hydrolysis of both ester bonds produces the inactive metabolite, Δ1-cortienic acid (Δ1-CA). The simple high-performance liquid chromatography method using acetic acid gradient was developed for the simultaneous determination of LE and its acidic metabolites. LE was hydrolyzed in rat plasma with a half-life of 9 min. However, LE hydrolysis was undetectable in rat liver and intestine. LE hydrolysis in rat plasma was completely inhibited by paraoxon and bis(p-nitrophenyl) phosphate, thus identifying carboxylesterase as the LE hydrolase. Rat plasma carboxylesterase had a Km of 6.7 µM for LE. In contrast to the disappearance rate of LE in rat plasma, the formation rate of 17α-monoester and Δ1-CA was markedly low, and a main hydrolysate of LE was not detected in rat plasma. The metabolism of LE proceeded via different pathways in human and rat plasma. LE was slowly hydrolyzed by paraoxonase in human plasma to 17α-monoester with a half-life of 12 h, but by carboxylesterase in rat plasma to yield undetectable products, presumed to include the unstable 17ß-monoester.


Asunto(s)
Mucosa Intestinal/metabolismo , Hígado/metabolismo , Etabonato de Loteprednol , Plasma/metabolismo , Animales , Cromatografía Líquida de Alta Presión , Etabonato de Loteprednol/farmacocinética , Etabonato de Loteprednol/farmacología , Masculino , Paraoxon/farmacología , Ratas , Ratas Wistar
14.
Biol Pharm Bull ; 41(5): 697-706, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29709907

RESUMEN

Carboxylesterase 2 (CES2), which is a member of the serine hydrolase superfamily, is primarily expressed in the human small intestine, where it plays an important role in the metabolism of ester-containing drugs. Therefore, to facilitate continued progress in ester-containing drug development, it is crucial to evaluate how CES2-mediated hydrolysis influences its intestinal permeability characteristics. Human colon carcinoma Caco-2 cells have long been widely used in drug permeability studies as an enterocyte model. However, they are not suitable for ester-containing drug permeability studies due to the fact that Caco-2 cells express CES1 (which is not expressed in human enterocytes) but do not express CES2. To resolve this problem, we created a new Caco-2 cell line carrying the human small intestine-type CES expression profile. We began by introducing short-hairpin RNA for CES1 mRNA knockdown into Caco-2 cells to generate CES1-decifient Caco-2 cells (Caco-2CES1KD cells). Then, we developed Caco-2CES1KD cells that stably express CES2 (CES2/Caco-2CES1KD cells) and their control Mock/Caco-2CES1KD cells. The results of a series of functional expression experiments confirmed that CES2-specific activity, along with CES2 mRNA and protein expression, were clearly detected in our CES2/Caco-2CES1KD cells. Furthermore, we also confirmed that CES2/Caco-2CES1KD cells retained their tight junction formation property as well as their drug efflux transporter functions. Collectively, based on our results clearly showing that CES2/Caco-2CES1KD cells carry the human intestinal-type CES expression profile, while concomitantly retaining their barrier properties, it can be expected that this cell line will provide a promising in vitro model for ester-containing drug permeability studies.


Asunto(s)
Células CACO-2 , Carboxilesterasa/genética , Mucosa Intestinal/metabolismo , Carboxilesterasa/metabolismo , Humanos , Permeabilidad , ARN Mensajero/genética , Tiazepinas/farmacología
15.
J Med Primatol ; 47(3): 185-191, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29573432

RESUMEN

BACKGROUND: Butyrylcholinesterase (BChE), an enzyme essential for drug metabolism, has been investigated as antidotes against organophosphorus nerve agents, and the efficacy and safety have been studied in cynomolgus macaques. BChE polymorphisms partly account for variable BChE activities among individuals in humans, but have not been investigated in cynomolgus macaques. METHODS: Molecular characterization was carried out by analyzing primary sequence, gene, tissue expression, and genetic variants. RESULTS: In cynomolgus and human BChE, phylogenetically closely related, amino acid residues important for enzyme function were conserved, and gene and genomic structure were similar. Cynomolgus BChE mRNA was most abundantly expressed in liver among the 10 tissue types analyzed. Re-sequencing found 26 non-synonymous genetic variants in 121 cynomolgus and 23 rhesus macaques, indicating that macaque BChE is polymorphic, although none of these variants corresponded to the null or defective alleles of human BChE. CONCLUSIONS: These results suggest molecular similarities of cynomolgus and human BChE.


Asunto(s)
Butirilcolinesterasa/genética , Macaca fascicularis/genética , Polimorfismo Genético , Secuencia de Aminoácidos , Animales , Butirilcolinesterasa/química , Butirilcolinesterasa/metabolismo , Perfilación de la Expresión Génica , Macaca fascicularis/metabolismo , Alineación de Secuencia
16.
Eur J Pharm Sci ; 114: 267-274, 2018 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-29289670

RESUMEN

In the present study, we established a quantitative western blotting method to measure the expression level of recombinant serine hydrolases based on their catalytic mechanism. Fluorophosphonate (FP)-biotin was selected as a universal probe to quantify their expression levels, since FP moiety irreversibly inhibits serine hydrolases through strong stoichiometric binding to active serine residue. The linearity of detection using FP-biotin was assessed on three serine hydrolases; human carboxylesterase (CES) 1, butyrylcholinesterase and porcine liver esterases (PLE). Similar response signals were obtained from the equimolar concentrations of these enzymes and excellent linearity was observed at the range of 0.4-3.4pmol/lane (r2>0.99). Accuracy and precision of the proposed method were proved using PLE with recovery of 97.1-107.2% and relative standard deviation of 5.56%. PLE was selected as a calibration standard because of its high stability and commercial availability. As an application of the developed method, we measured the expression levels of four recombinant CES isozymes from human and cynomolgus macaque in S9 fraction of HEK293 cell homogenates. The expression levels of human CES1 and CES2, and cynomolgus macaque CES1 and CES2 were 2.51±0.1, 1.63±0.17, 0.79±0.09 and 1.37±0.13pmol/5µg S9 protein, respectively. Based on these determinations, their hydrolytic activities were accurately assessed. Cynomolgus CESs showed lower hydrolysis activities for p-nitrophenyl esters than human CESs. The hydrolase activities of CES2 isozymes were higher than CES1 in both species. Three to five folds faster hydrolysis for p-nitrophenyl butyrate than p-nitrophenyl acetate was observed in all CES isozymes except of cynomolgus CES1 that showed nearly same hydrolysis for both substrates. The provided method could be widely used for universal quantitative analysis of recombinant serine hydrolases.


Asunto(s)
Biotina/metabolismo , Colorantes Fluorescentes/metabolismo , Fluoruros/metabolismo , Regulación Enzimológica de la Expresión Génica , Fosfatos/metabolismo , Serina Endopeptidasas/metabolismo , Animales , Biotina/química , Bovinos , Colorantes Fluorescentes/química , Fluoruros/química , Células HEK293 , Humanos , Macaca fascicularis , Fosfatos/química , Serina Endopeptidasas/química , Porcinos
17.
Eur J Pharm Sci ; 109: 280-287, 2017 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-28821439

RESUMEN

We studied the effect that three alcohols, ethanol (EA), propanol (PA), and isopropanol (IPA), have on the skin permeation of p-hydroxy benzoic acid methyl ester (HBM), a model ester-type prodrug. HBM was applied to Yucatan micropig skin in a saturated phosphate buffered solution with or without 10% alcohol, and HBM and related materials in receptor fluid and skin were determined with HPLC. In the absence of alcohol, p-hydroxy benzoic acid (HBA), a metabolite of HBM, permeated the skin the most. The three alcohols enhanced the penetration of HBM at almost the same extent. The addition of 10% EA or PA to the HBM solution led to trans-esterification into the ethyl ester or propyl ester of HBA, and these esters permeated skin as well as HBA and HBM did. In contrast, the addition of 10% IPA promoted very little trans-esterification. Both hydrolysis and trans-esterification in the skin S9 fraction were inhibited by BNPP, an inhibitor of carboxylesterase (CES). Western blot and native PAGE showed the abundant expression of CES in micropig skin. Both hydrolysis and trans-esterification was simultaneously catalyzed by CES during skin permeation. Our data indicate that the alcohol used in dermal drug preparations should be selected not only for its ability to enhance the solubility and permeation of the drug, but also for the effect on metabolism of the drug in the skin.


Asunto(s)
Alcoholes/farmacología , Parabenos/farmacocinética , Profármacos/farmacocinética , Absorción Cutánea/efectos de los fármacos , Piel/efectos de los fármacos , Animales , Piel/metabolismo , Porcinos
18.
J Pharm Sci ; 106(9): 2881-2888, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28549908

RESUMEN

para-Aminobenzoic acid (PABA) has long been used as an indicator of the completeness of 24-h urine collection by determination of total urinary excretion of PABA and its metabolite, N-acetyl-PABA. N-Acetyl-PABA is formed by human arylamine N-acetyltransferase 1 (NAT1) in liver and intestine. This intestinal metabolism may reduce the urinary recovery of PABA due to secretion of N-acetyl-PABA into the intestinal lumen. In the present study, the effect of intestinal metabolism of PABA on its absorption was quantitatively evaluated by the in situ single-pass perfusion method using rat intestine expressing rat arylamine N-acetyltransferase 2 (Nat2), which is similar to human NAT1. PABA was taken up in a linear fashion in the intestinal mucosa and its effective permeability coefficient indicated 100% absorption. The metabolism of PABA to N-acetyl-PABA reached saturation and substrate inhibition was observed at higher PABA concentrations. These phenomena were also observed in an in vitro study using the intestinal S9 fraction. Interestingly, N-acetyl-PABA was transported more quickly into the vein than into the intestinal lumen. Both the substrate inhibition of Nat2 and transporter-mediated efflux of N-acetyl-PABA into veins result in low secretion levels of N-acetyl-PABA into the intestinal mucosa over a wide range of PABA concentrations.


Asunto(s)
Ácido 4-Aminobenzoico/metabolismo , Arilamina N-Acetiltransferasa/metabolismo , Absorción Intestinal , Animales , Transporte Biológico , Mucosa Intestinal/metabolismo , Masculino , Ratas Wistar
19.
Biochem Pharmacol ; 127: 82-89, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28017774

RESUMEN

The soft drug approach is successful in obtaining high local therapeutic efficacy without systemic adverse effects, because soft drugs are designed to be bioconverted to inactive form by hydrolytic enzymes in systemic circulation. However, there is little information about the exact nature of these metabolic enzymes. In this study, the human enzymes for biotransformation of soft drugs were investigated. Loteprednol etabonate (LE) and etiprednol dicloacetate (ED) were designed from Δ1-cortienic acid (Δ1-CA), the inactive metabolite of prednisolone, by introducing two labile ester bonds to restore the corticosteroidal activity. We found that LE and ED were mainly deactivated in human plasma rather than the liver. Inactive monoesters were produced, but the second hydrolysis to Δ1-CA was much slower. ED was hydrolyzed 10 times faster than LE in plasma (t1/2=1.35±0.08, 12.07±0.52h respectively). Paraoxonase 1 that attached with high density lipoprotein (HDL) was found to be the major hydrolase for LE and ED in human plasma as demonstrated by enzyme inhibition and stimulation experiments and the hydrolysis in lipoproteins-rich plasma fractions. Human serum albumin (HSA) showed slight hydrolase activity against ED but not LE. LE was slowly hydrolyzed in liver (clearance: 0.21±0.04 and 2.41±0.13ml/h/kg in liver and plasma, respectively) but ED wasn't hydrolyzed at all, so LE has superior metabolism in two sites. The difficult diffusion of HDL into tissues from blood suggests the stable presence of LE at the administration site, while ED might be deactivated by its relatively rapid chemical hydrolysis and hydrolase activity of HSA, in the interstitial fluid of the administration tissue. Moreover, deactivation in plasma and strong protein binding (around 98%) minimize the adverse effects of LE and ED in the systemic circulation.


Asunto(s)
Corticoesteroides/metabolismo , Arildialquilfosfatasa/metabolismo , Etabonato de Loteprednol/metabolismo , Corticoesteroides/sangre , Valerato de Betametasona/sangre , Valerato de Betametasona/metabolismo , Humanos , Hidrólisis , Lipoproteínas/metabolismo , Hígado/metabolismo , Etabonato de Loteprednol/sangre , Unión Proteica , Albúmina Sérica/metabolismo
20.
Drug Metab Dispos ; 44(12): 1890-1898, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27638507

RESUMEN

Caco-2 cells predominantly express human carboxylesterase 1 (hCE1), unlike the human intestine that predominantly expresses human carboxylesterase 2 (hCE2). Transport experiments using Caco-2 cell monolayers often lead to misestimation of the intestinal absorption of prodrugs because of this difference, as prodrugs designed to increase the bioavailability of parent drugs are made to be resistant to hCE2 in the intestine, so that they can be hydrolyzed by hCE1 in the liver. In the present study, we tried to establish a new Caco-2 subclone, with a similar pattern of carboxylase expression to human intestine, to enable a more accurate estimation of the intestinal absorption of prodrugs. Although no subclone could be identified with high expression levels of only hCE2, two subclones, #45 and #78, with extremely low expression levels of hCE1 were subcloned from parental Caco-2 cells by the limiting dilution technique. Unfortunately, subclone #45 did not form enterocyte-like cell monolayers due to low expression of claudins and ß-actin. However, subclone #78 formed polarized cell monolayers over 4 weeks and showed similar paracellular and transcellular transport properties to parental Caco-2 cell monolayers. In addition, the intestinal transport of oseltamivir, a hCE1 substrate, could be evaluated in subclone #78 cell monolayers, including P-glycoprotein-mediated efflux under nonhydrolysis conditions, unlike parental Caco-2 cells. Consequently, it is proposed that subclone #78 may provide a more effective system in which to evaluate the intestinal absorption of prodrugs that are intended to be hydrolyzed by hCE1.


Asunto(s)
Hidrolasas de Éster Carboxílico/metabolismo , Intestino Delgado/metabolismo , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Actinas/metabolismo , Disponibilidad Biológica , Células CACO-2 , Carboxilesterasa/metabolismo , Línea Celular Tumoral , Humanos , Hidrólisis , Absorción Intestinal/fisiología , Hígado/metabolismo , Oseltamivir/metabolismo , Profármacos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...