Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Epigenetics Chromatin ; 10(1): 35, 2017 07 11.
Artículo en Inglés | MEDLINE | ID: mdl-28693562

RESUMEN

BACKGROUND: In homeotherms, the alpha-globin gene clusters are located within permanently open genome regions enriched in housekeeping genes. Terminal erythroid differentiation results in dramatic upregulation of alpha-globin genes making their expression comparable to the rRNA transcriptional output. Little is known about the influence of the erythroid-specific alpha-globin gene transcription outburst on adjacent, widely expressed genes and large-scale chromatin organization. Here, we have analyzed the total transcription output, the overall chromatin contact profile, and CTCF binding within the 2.7 Mb segment of chicken chromosome 14 harboring the alpha-globin gene cluster in cultured lymphoid cells and cultured erythroid cells before and after induction of terminal erythroid differentiation. RESULTS: We found that, similarly to mammalian genome, the chicken genomes is organized in TADs and compartments. Full activation of the alpha-globin gene transcription in differentiated erythroid cells is correlated with upregulation of several adjacent housekeeping genes and the emergence of abundant intergenic transcription. An extended chromosome region encompassing the alpha-globin cluster becomes significantly decompacted in differentiated erythroid cells, and depleted in CTCF binding and CTCF-anchored chromatin loops, while the sub-TAD harboring alpha-globin gene cluster and the upstream major regulatory element (MRE) becomes highly enriched with chromatin interactions as compared to lymphoid and proliferating erythroid cells. The alpha-globin gene domain and the neighboring loci reside within the A-like chromatin compartment in both lymphoid and erythroid cells and become further segregated from the upstream gene desert upon terminal erythroid differentiation. CONCLUSIONS: Our findings demonstrate that the effects of tissue-specific transcription activation are not restricted to the host genomic locus but affect the overall chromatin structure and transcriptional output of the encompassing topologically associating domain.


Asunto(s)
Proteínas Aviares/genética , Cromatina/genética , Activación Transcripcional , Regulación hacia Arriba , Globinas alfa/genética , Animales , Proteínas Aviares/metabolismo , Factor de Unión a CCCTC/metabolismo , Línea Celular , Pollos , Cromatina/metabolismo , Células Eritroides/citología , Células Eritroides/metabolismo , Eritropoyesis , Genes Esenciales , Unión Proteica , Globinas alfa/metabolismo
2.
Elife ; 52016 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-27192037

RESUMEN

The mechanism by which chromatids and chromosomes are segregated during mitosis and meiosis is a major puzzle of biology and biophysics. Using polymer simulations of chromosome dynamics, we show that a single mechanism of loop extrusion by condensins can robustly compact, segregate and disentangle chromosomes, arriving at individualized chromatids with morphology observed in vivo. Our model resolves the paradox of topological simplification concomitant with chromosome 'condensation', and explains how enzymes a few nanometers in size are able to control chromosome geometry and topology at micron length scales. We suggest that loop extrusion is a universal mechanism of genome folding that mediates functional interactions during interphase and compacts chromosomes during mitosis.


Asunto(s)
Cromátides/metabolismo , Segregación Cromosómica , Replicación del ADN , Meiosis , Mitosis , Adenosina Trifosfatasas/metabolismo , Simulación por Computador , Proteínas de Unión al ADN/metabolismo , Modelos Biológicos , Complejos Multiproteicos/metabolismo
3.
Genome Res ; 26(1): 70-84, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26518482

RESUMEN

Recent advances enabled by the Hi-C technique have unraveled many principles of chromosomal folding that were subsequently linked to disease and gene regulation. In particular, Hi-C revealed that chromosomes of animals are organized into topologically associating domains (TADs), evolutionary conserved compact chromatin domains that influence gene expression. Mechanisms that underlie partitioning of the genome into TADs remain poorly understood. To explore principles of TAD folding in Drosophila melanogaster, we performed Hi-C and poly(A)(+) RNA-seq in four cell lines of various origins (S2, Kc167, DmBG3-c2, and OSC). Contrary to previous studies, we find that regions between TADs (i.e., the inter-TADs and TAD boundaries) in Drosophila are only weakly enriched with the insulator protein dCTCF, while another insulator protein Su(Hw) is preferentially present within TADs. However, Drosophila inter-TADs harbor active chromatin and constitutively transcribed (housekeeping) genes. Accordingly, we find that binding of insulator proteins dCTCF and Su(Hw) predicts TAD boundaries much worse than active chromatin marks do. Interestingly, inter-TADs correspond to decompacted inter-bands of polytene chromosomes, whereas TADs mostly correspond to densely packed bands. Collectively, our results suggest that TADs are condensed chromatin domains depleted in active chromatin marks, separated by regions of active chromatin. We propose the mechanism of TAD self-assembly based on the ability of nucleosomes from inactive chromatin to aggregate, and lack of this ability in acetylated nucleosomal arrays. Finally, we test this hypothesis by polymer simulations and find that TAD partitioning may be explained by different modes of inter-nucleosomal interactions for active and inactive chromatin.


Asunto(s)
Cromatina/genética , Drosophila melanogaster/genética , Genoma de los Insectos , Transcripción Genética , Animales , Línea Celular , Ensamble y Desensamble de Cromatina , Mapeo Cromosómico , Simulación por Computador , Modelos Moleculares , Nucleosomas/genética , Nucleosomas/metabolismo , Cromosomas Politénicos/genética , Análisis de Secuencia de ARN
4.
FEBS Lett ; 589(20 Pt A): 3031-6, 2015 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-26364723

RESUMEN

Recently, Chromosome Conformation Capture (3C) based experiments have highlighted the importance of computational models for the study of chromosome organization. In this review, we propose that current computational models can be grouped into roughly four classes, with two classes of data-driven models: consensus structures and data-driven ensembles, and two classes of de novo models: structural ensembles and mechanistic ensembles. Finally, we highlight specific questions mechanistic ensembles can address.


Asunto(s)
Cromatina/ultraestructura , Animales , Cromatina/fisiología , Mapeo Cromosómico , Simulación por Computador , Humanos , Modelos Moleculares
5.
Soft Matter ; 11(4): 665-71, 2015 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-25472862

RESUMEN

Topological constraints can affect both equilibrium and dynamic properties of polymer systems and can play a role in the organization of chromosomes. Despite many theoretical studies, the effects of topological constraints on the equilibrium state of a single compact polymer have not been systematically studied. Here we use simulations to address this longstanding problem. We find that sufficiently long unknotted polymers differ from knotted ones in the spatial and topological states of their subchains. The unknotted globule has subchains that are mostly unknotted and form asymptotically compact RG(s)∼s1/3 crumples. However, crumples display a high fractal dimension of the surface db=2.8, forming excessive contacts and interpenetrating each other. We conclude that this topologically constrained equilibrium state resembles a conjectured crumpled globule [Grosberg et al., Journal de Physique, 1988, 49, 2095], but differs from its idealized hierarchy of self-similar, isolated and compact crumples.

6.
Science ; 342(6159): 731-4, 2013 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-24158908

RESUMEN

Chromosomes must be highly compacted and organized within cells, but how this is achieved in vivo remains poorly understood. We report the use of chromosome conformation capture coupled with deep sequencing (Hi-C) to map the structure of bacterial chromosomes. Analysis of Hi-C data and polymer modeling indicates that the Caulobacter crescentus chromosome consists of multiple, largely independent spatial domains that are probably composed of supercoiled plectonemes arrayed into a bottle brush-like fiber. These domains are stable throughout the cell cycle and are reestablished concomitantly with DNA replication. We provide evidence that domain boundaries are established by highly expressed genes and the formation of plectoneme-free regions, whereas the histone-like protein HU and SMC (structural maintenance of chromosomes) promote short-range compaction and the colinearity of chromosomal arms, respectively. Collectively, our results reveal general principles for the organization and structure of chromosomes in vivo.


Asunto(s)
Caulobacter crescentus/genética , Cromosomas Bacterianos/química , Cromosomas Bacterianos/genética , Mapeo Físico de Cromosoma , Ciclo Celular/genética , Replicación del ADN/genética , ADN Bacteriano/química , ADN Bacteriano/genética , ADN Superhelicoidal/química , ADN Superhelicoidal/genética , Regulación Bacteriana de la Expresión Génica , Conformación de Ácido Nucleico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...