Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Mar Biotechnol (NY) ; 26(2): 338-350, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38451444

RESUMEN

The sea squirt Ciona robusta (formerly Ciona intestinalis type A) has been the subject of many interdisciplinary studies. Known as a vanadium-rich ascidian, C. robusta is an ideal model for exploring microbes associated with the ascidian and the roles of these microbes in vanadium accumulation and reduction. In this study, we discovered two bacterial strains that accumulate large amounts of vanadium, CD2-88 and CD2-102, which belong to the genera Pseudoalteromonas and Vibrio, respectively. The growth medium composition impacted vanadium uptake. Furthermore, pH was also an important factor in the accumulation and localization of vanadium. Most of the vanadium(V) accumulated by these bacteria was converted to less toxic vanadium(IV). Our results provide insights into vanadium accumulation and reduction by bacteria isolated from the ascidian C. robusta to further study the relations between ascidians and microbes and their possible applications for bioremediation or biomineralization.


Asunto(s)
Ciona intestinalis , Vanadio , Animales , Vanadio/metabolismo , Ciona intestinalis/metabolismo , Ciona intestinalis/microbiología , Pseudoalteromonas/metabolismo , Vibrio/metabolismo , Concentración de Iones de Hidrógeno , Intestinos/microbiología , Medios de Cultivo/química , ARN Ribosómico 16S/genética
2.
Endocr J ; 71(2): 181-191, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38220202

RESUMEN

Vertebrate animals often exhibit sexual dimorphism in body shape. In mammals, decreases in sex hormones caused by testicular castration can affect body shape and occasionally lead to pathologies such as obesity. Post-castration obesity can also be problematic for the health of companion animals, including non-mammals. In order to understand the mechanism of post-castration obesity in vertebrates other than mammals, experimental models are required. We examined whether the Iberian ribbed newt, which has recently become a popular experimental model for amphibian research, could serve as a model for analyzing changes in body shape after castration. In newts, new testes can be regenerated after removal of differentiated testes. We analyzed changes in body shape by removing the testes under conditions in which they could regenerate or conditions in which they could not regenerate. Removal of the testes reduced blood testosterone levels. The body weight and abdominal girth of the newts were increased compared with normal male newts. Transcriptome analysis of the liver showed that a set of genes related to lipid metabolism was continuously up-regulated in castrated newts. Our study suggests that changes in body shape after castration are common in vertebrates. Iberian ribbed newts are thus a suitable model for comparative studies of the long-term physiologic- and endocrine-level effects of castration.


Asunto(s)
Obesidad , Salamandridae , Animales , Masculino , Salamandridae/genética , Castración , Aumento de Peso , Mamíferos , Testosterona
3.
J Reprod Dev ; 70(2): 55-64, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38246612

RESUMEN

The mammalian X chromosome exhibits enrichment in genes associated with germ cell development. Previously, we generated a rat model of Becker muscular dystrophy (BMD) characterized by an in-frame mutation in the dystrophin gene, situated on the X chromosome and responsible for encoding a protein crucial for muscle integrity. Male BMD rats are infertile owing to the absence of normal spermatids in the epididymis. Within the seminiferous tubules of BMD rats, elongated spermatids displayed abnormal morphology. To elucidate the cause of infertility, we identified a putative gene containing an open reading frame situated in the intronic region between exons 6 and 7 of the dystrophin gene, specifically deleted in male BMD rats. This identified gene, along with its encoded protein, exhibited specific detection within the testes, exclusively localized in round to elongated spermatids during spermiogenesis. Consequently, we designated the encoded protein as dystrophin-locus-derived testis-specific protein (DTSP). Given the absence of DTSP in the testes of BMD rats, we hypothesized that the loss of DTSP contributes to the infertility observed in male BMD rats.


Asunto(s)
Infertilidad , Succinimidas , Testículo , Masculino , Ratas , Animales , Testículo/metabolismo , Distrofina/genética , Distrofina/metabolismo , Espermatogénesis/genética , Proteínas/metabolismo , Infertilidad/metabolismo , Mamíferos
4.
FEBS Lett ; 597(21): 2611-2625, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37846797

RESUMEN

Cortical expansion has occurred during human brain evolution. By comparing human and mouse RNA-seq datasets, we found that transmembrane protein 25 (TMEM25) was much more highly expressed in human neural progenitors (NPCs). Overexpression of either human TMEM25 or mouse Tmem25 similarly promoted mouse NPC proliferation in vitro. Mimicking human-type expression of TMEM25 in mouse ventricular cortical progenitors accelerated proliferation of basal radial glia (bRG) and increased the number of upper-layer neurons in vivo. By contrast, RNA-seq analysis, and pharmacological assays showed that knockdown of TMEM25 in cultured human NPCs compromised the effects of extracellular signals, leading to cell cycle inhibition via Akt repression. Thus, TMEM25 can receive extracellular signals to expand bRG in human cortical development.


Asunto(s)
Células-Madre Neurales , Animales , Humanos , Ratones , Encéfalo , Proliferación Celular , Neurogénesis , Neuronas/metabolismo
5.
Front Cell Dev Biol ; 11: 1168072, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37408531

RESUMEN

Microcephaly is characterized as a small head circumference, and is often accompanied by developmental disorders. Several candidate risk genes for this disease have been described, and mutations in non-coding regions are occasionally found in patients with microcephaly. Various non-coding RNAs (ncRNAs), such as microRNAs (miRNAs), SINEUPs, telomerase RNA component (TERC), and promoter-associated lncRNAs (pancRNAs) are now being characterized. These ncRNAs regulate gene expression, enzyme activity, telomere length, and chromatin structure through RNA binding proteins (RBPs)-RNA interaction. Elucidating the potential roles of ncRNA-protein coordination in microcephaly pathogenesis might contribute to its prevention or recovery. Here, we introduce several syndromes whose clinical features include microcephaly. In particular, we focus on syndromes for which ncRNAs or genes that interact with ncRNAs may play roles. We discuss the possibility that the huge ncRNA field will provide possible new therapeutic approaches for microcephaly and also reveal clues about the factors enabling the evolutionary acquisition of the human-specific "large brain."

6.
Front Endocrinol (Lausanne) ; 14: 1129666, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36967776

RESUMEN

Consecutive sexual maturation (CSM), an abnormal reproductive phenomenon of a marine snail, Reishia clavigera, has occurred since 2017 in the vicinity of the Fukushima Daiichi Nuclear Power Plant after the nuclear disaster there. We hypothesized that alterations in animal physiology mediated through genetic/epigenetic changes could sensitively reflect environmental pollution. Understanding the mechanism of this rapid biological response should enable us to quantitatively evaluate long-lasting effects of the nuclear disaster. To determine the molecular basis for CSM, we conducted transcriptome profiling in the ganglia of normal and CSM snails. We assembled the short-read cDNA sequences obtained by Illumina sequencing, and succeeded in characterizing more than 60,000 gene models that include 88 kinds of neuropeptide precursors by BLAST search and experimental curation. GO-enrichment analysis of the differentially expressed genes demonstrated that severe downregulation of neuropeptide-related genes occurred concomitantly with CSM. In particular, significant decreases of the transcripts of 37 genes among 88 neuropeptide precursor genes, including those for myomodulin, PentaFVamide, maturation-associated peptide-5A and conopressin, were commonly observed in female and male CSM snails. By contrast, microseminoprotein precursor was the only exceptional case where the expression was increased in CSM snails. These results indicate that down-regulation of neuropeptide precursors is a remarkable feature of CSM. We also found that factors involved in epigenetic modification rather than transcription factors showed altered patterns of expression upon CSM. Comprehensive expression panels of snail neuropeptide precursors made in this study will be useful tools for environmental assessment as well as for studying marine reproductive biology.


Asunto(s)
Desastres , Neuropéptidos , Animales , Maduración Sexual , Regulación hacia Abajo , Japón , Neuropéptidos/metabolismo
7.
Genes Dev ; 35(21-22): 1431-1444, 2021 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-34675062

RESUMEN

During neocortical development, tight regulation of neurogenesis-to-astrogenesis switching of neural precursor cells (NPCs) is critical to generate a balanced number of each neural cell type for proper brain functions. Accumulating evidence indicates that a complex array of epigenetic modifications and the availability of extracellular factors control the timing of neuronal and astrocytic differentiation. However, our understanding of NPC fate regulation is still far from complete. Bone morphogenetic proteins (BMPs) are renowned as cytokines that induce astrogenesis of gliogenic late-gestational NPCs. They also promote neurogenesis of mid-gestational NPCs, although the underlying mechanisms remain elusive. By performing multiple genome-wide analyses, we demonstrate that Smads, transcription factors that act downstream from BMP signaling, target dramatically different genomic regions in neurogenic and gliogenic NPCs. We found that histone H3K27 trimethylation and DNA methylation around Smad-binding sites change rapidly as gestation proceeds, strongly associated with the alteration of accessibility of Smads to their target binding sites. Furthermore, we identified two lineage-specific Smad-interacting partners-Sox11 for neurogenic and Sox8 for astrocytic differentiation-that further ensure Smad-regulated fate-specific gene induction. Our findings illuminate an exquisite regulation of NPC property change mediated by the interplay between cell-extrinsic cues and -intrinsic epigenetic programs during cortical development.


Asunto(s)
Células-Madre Neurales , Encéfalo , Diferenciación Celular/genética , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Neurogénesis/genética , Embarazo , Factores de Transcripción SOXE/genética
8.
Pharmacol Res Perspect ; 9(6): e00749, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34677001

RESUMEN

The brain consists of three major cell types: neurons and two glial cell types (astrocytes and oligodendrocytes). Although they are generated from common multipotent neural stem/precursor cells (NS/PCs), embryonic NS/PCs cannot generate all of the cell types at the beginning of brain development. NS/PCs first undergo extensive self-renewal to expand their pools, and then acquire the potential to produce neurons, followed by glial cells. Astrocytes are the most frequently found cell type in the central nervous system (CNS), and play important roles in brain development and functions. Although it has been shown that nuclear factor IA (Nfia) is a pivotal transcription factor for conferring gliogenic potential on neurogenic NS/PCs by sequestering DNA methyltransferase 1 (Dnmt1) from astrocyte-specific genes, direct targets of Nfia that participate in astrocytic differentiation have yet to be completely identified. Here we show that SRY-box transcription factor 8 (Sox8) is a direct target gene of Nfia at the initiation of the gliogenic phase. We found that expression of Sox8 augmented leukemia inhibitory factor (LIF)-induced astrocytic differentiation, while Sox8 knockdown inhibited Nfia-enhanced astrocytic differentiation of NS/PCs. In contrast to Nfia, Sox8 did not induce DNA demethylation of an astrocyte-specific marker gene, glial fibrillary acidic protein (Gfap), but instead associated with LIF downstream transcription factor STAT3 through transcriptional coactivator p300, explaining how Sox8 expression further facilitated LIF-induced Gfap expression. Taken together, these results suggest that Sox8 is a crucial Nfia downstream transcription factor for the astrocytic differentiation of NS/PCs in the developing brain.


Asunto(s)
Astrocitos/citología , Factores de Transcripción NFI/genética , Células-Madre Neurales/citología , Factores de Transcripción SOXE/genética , Animales , Diferenciación Celular , Células Cultivadas , Factor Inhibidor de Leucemia/metabolismo , Ratones , Ratones Endogámicos ICR , Neurogénesis/fisiología , Neuronas/citología
9.
J Reprod Dev ; 67(6): 369-379, 2021 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-34615840

RESUMEN

Post-mitotic neurons do exhibit DNA methylation changes, contrary to the longstanding belief that the epigenetic pattern in terminally differentiated cells is essentially unchanged. While the mechanism and physiological significance of DNA demethylation in neurons have been extensively elucidated, the occurrence of de novo DNA methylation and its impacts have been much less investigated. In the present study, we showed that neuronal activation induces de novo DNA methylation at enhancer regions, which can repress target genes in primary cultured hippocampal neurons. The functional significance of this de novo DNA methylation was underpinned by the demonstration that inhibition of DNA methyltransferase (DNMT) activity decreased neuronal activity-induced excitatory synaptogenesis. Overexpression of WW and C2 domain-containing 1 (Wwc1), a representative target gene of de novo DNA methylation, could phenocopy this DNMT inhibition-induced decrease in synaptogenesis. We found that both DNMT1 and DNMT3a were required for neuronal activity-induced de novo DNA methylation of the Wwc1 enhancer. Taken together, we concluded that neuronal activity-induced de novo DNA methylation that affects gene expression has an impact on neuronal physiology that is comparable to that of DNA demethylation. Since the different requirements of DNMTs for germ cell and embryonic development are known, our findings also have considerable implications for future studies on epigenomics in the field of reproductive biology.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , Metilación de ADN , ADN (Citosina-5-)-Metiltransferasa 1/genética , ADN (Citosina-5-)-Metiltransferasa 1/metabolismo , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , ADN Metiltransferasa 3A , Neuronas/metabolismo , Secuencias Reguladoras de Ácidos Nucleicos
10.
Science ; 373(6552)2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34437124

RESUMEN

Oocytes mature in a specialized fluid-filled sac, the ovarian follicle, which provides signals needed for meiosis and germ cell growth. Methods have been developed to generate functional oocytes from pluripotent stem cell-derived primordial germ cell-like cells (PGCLCs) when placed in culture with embryonic ovarian somatic cells. In this study, we developed culture conditions to recreate the stepwise differentiation process from pluripotent cells to fetal ovarian somatic cell-like cells (FOSLCs). When FOSLCs were aggregated with PGCLCs derived from mouse embryonic stem cells, the PGCLCs entered meiosis to generate functional oocytes capable of fertilization and development to live offspring. Generating functional mouse oocytes in a reconstituted ovarian environment provides a method for in vitro oocyte production and follicle generation for a better understanding of mammalian reproduction.


Asunto(s)
Células Madre Embrionarias de Ratones/fisiología , Oocitos/fisiología , Oogénesis , Folículo Ovárico/citología , Animales , Técnicas de Cultivo de Célula , Diferenciación Celular , Desarrollo Embrionario , Femenino , Fertilización In Vitro , Masculino , Mesodermo/citología , Mesodermo/fisiología , Ratones , Ratones Endogámicos ICR , Células Madre Embrionarias de Ratones/citología , Oocitos/citología , Folículo Ovárico/embriología , Folículo Ovárico/fisiología , RNA-Seq , Factor Esteroidogénico 1/genética , Factor Esteroidogénico 1/metabolismo , Transcriptoma
11.
Essays Biochem ; 65(4): 697-708, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34328174

RESUMEN

Increasing evidence has shown that many long non-coding RNAs (lncRNAs) are involved in gene regulation in a variety of ways such as transcriptional, post-transcriptional and epigenetic regulation. Promoter-associated non-coding RNAs (pancRNAs), which are categorized into the most abundant single-copy lncRNA biotype, play vital regulatory roles in finely tuning cellular specification at the epigenomic level. In short, pancRNAs can directly or indirectly regulate downstream genes to participate in the development of organisms in a cell-specific manner. In this review, we will introduce the evolutionarily acquired characteristics of pancRNAs as determined by comparative epigenomics and elaborate on the research progress on pancRNA-involving processes in mammalian embryonic development, including neural differentiation.


Asunto(s)
Epigénesis Genética , ARN Largo no Codificante , Animales , Femenino , Mamíferos/genética , Embarazo , Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , ARN no Traducido/genética
12.
Cell Rep ; 35(7): 109124, 2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-34010654

RESUMEN

Rett syndrome (RTT) is a severe neurological disorder, with impaired brain development caused by mutations in MECP2; however, the underlying mechanism remains elusive. We know from previous work that MeCP2 facilitates the processing of a specific microRNA, miR-199a, by associating with the Drosha complex to regulate neuronal functions. Here, we show that the MeCP2/miR-199a axis regulates neural stem/precursor cell (NS/PC) differentiation. A shift occurs from neuronal to astrocytic differentiation of MeCP2- and miR-199a-deficient NS/PCs due to the upregulation of a miR-199a target, Smad1, a downstream transcription factor of bone morphogenetic protein (BMP) signaling. Moreover, miR-199a expression and treatment with BMP inhibitors rectify the differentiation of RTT patient-derived NS/PCs and development of brain organoids, respectively, suggesting that facilitation of BMP signaling accounts for the impaired RTT brain development. Our study illuminates the molecular pathology of RTT and reveals the MeCP2/miR-199a/Smad1 axis as a potential therapeutic target for RTT.


Asunto(s)
Receptores de Proteínas Morfogenéticas Óseas/metabolismo , Proteína 2 de Unión a Metil-CpG/metabolismo , Células-Madre Neurales/metabolismo , Síndrome de Rett/genética , Animales , Diferenciación Celular , Modelos Animales de Enfermedad , Humanos , Ratones , Transducción de Señal
13.
J Reprod Dev ; 66(4): 369-375, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32336702

RESUMEN

Accumulating evidence suggests that kisspeptin-GPR54 signaling is indispensable for gonadotropin-releasing hormone (GnRH)/gonadotropin secretion and consequent reproductive functions in mammals. Conventional Kiss1 knockout (KO) mice and rats are reported to be infertile. To date, however, no study has investigated the effect of inducible central Kiss1 KO/knockdown on pulsatile gonadotropin release in male mammals. Here we report an in vivo analysis of inducible conditional Kiss1 knockdown male mice. The mice were generated by a bilateral injections of either adeno-associated virus (AAV) vectors driving Cre recombinase (AAV-Cre) or AAV vectors driving GFP (AAV-GFP, control) into the hypothalamic arcuate nucleus (ARC) of Kiss1-floxed male mice, in which exon 3 of the Kiss1 gene were floxed with loxP sites. Four weeks after the AAV-Cre injection, the mice showed a profound decrease in the both number of ARC Kiss1-expressing cells and the luteinizing hormone (LH) pulse frequency. Interestingly, pulsatile LH secretion was apparent 8 weeks after the AAV-Cre injection despite the suppression of ARC Kiss1 expression. The control Kiss1-floxed mice infected with AAV-GFP showed apparent LH pulses and Kiss1 expression in the ARC at both 4 and 8 weeks after the AAV-GFP injection. These results with an inducible conditional Kiss1 knockdown in the ARC of male mice suggest that ARC kisspeptin neurons are responsible for pulsatile LH secretion in male mice, and indicate the possibility of a compensatory mechanism that restores GnRH/LH pulse generation.


Asunto(s)
Núcleo Arqueado del Hipotálamo/metabolismo , Kisspeptinas/genética , Hormona Luteinizante/sangre , Neuronas/metabolismo , Animales , Técnicas de Silenciamiento del Gen , Hormona Liberadora de Gonadotropina/metabolismo , Kisspeptinas/metabolismo , Masculino , Ratones
14.
J Reprod Dev ; 66(4): 359-367, 2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32307336

RESUMEN

The present study aimed to evaluate whether novel conditional kisspeptin neuron-specific Kiss1 knockout (KO) mice utilizing the Cre-loxP system could recapitulate the infertility of global Kiss1 KO models, thereby providing further evidence for the fundamental role of hypothalamic kisspeptin neurons in regulating mammalian reproduction. We generated Kiss1-floxed mice and hypothalamic kisspeptin neuron-specific Cre-expressing transgenic mice and then crossed these two lines. The conditional Kiss1 KO mice showed pubertal failure along with a suppression of gonadotropin secretion and ovarian atrophy. These results indicate that newly-created hypothalamic Kiss1 KO mice obtained by the Cre-loxP system recapitulated the infertility of global Kiss1 KO models, suggesting that hypothalamic kisspeptin, but not peripheral kisspeptin, is critical for reproduction. Importantly, these Kiss1-floxed mice are now available and will be a valuable tool for detailed analyses of roles of each population of kisspeptin neurons in the brain and peripheral kisspeptin-producing cells by the spatiotemporal-specific manipulation of Cre expression.


Asunto(s)
Hipogonadismo/genética , Hipotálamo/metabolismo , Kisspeptinas/genética , Neuronas/metabolismo , Animales , Hipogonadismo/metabolismo , Kisspeptinas/metabolismo , Ratones , Ratones Noqueados , Ratones Transgénicos , Fenotipo
15.
Stem Cell Res ; 44: 101749, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-32151953

RESUMEN

Evolutionary developmental biology of our closest living relative, the chimpanzee (Pan troglodytes), is essential for understanding the origin of human traits. However, it is difficult to access developmental events in the chimpanzee in vivo because of technical and ethical restrictions. Induced pluripotent stem cells (iPSCs) offer an alternative in vitro model system to investigate developmental events by overcoming the limitations of in vivo study. Here, we generated chimpanzee iPSCs from adult skin fibroblasts and reconstructed early neural development using in vitro differentiation culture conditions. Chimpanzee iPSCs were established using straightforward methods, namely, lipofection of plasmid vectors carrying human reprogramming factors, combined with maintenance in a comprehensive feeder-free culture. Ultimately, direct neurosphere formation culture induced rapid and efficient differentiation of neural stem cells from chimpanzee iPSCs. Time course analysis of neurosphere formation demonstrated ontogenetic changes in gene expression profiles and developmental potency along an early neural development path from epiblasts to radial glia. Our iPSC culture system is a potent tool for investigating the molecular and cellular foundation underlying chimpanzee early neural development and better understanding of human brain evolution.


Asunto(s)
Células Madre Pluripotentes Inducidas , Animales , Diferenciación Celular , Reprogramación Celular , Fibroblastos , Humanos , Neurogénesis , Pan troglodytes
16.
Neuron ; 101(3): 472-485.e7, 2019 02 06.
Artículo en Inglés | MEDLINE | ID: mdl-30638745

RESUMEN

Minimal sets of transcription factors can directly reprogram somatic cells into neurons. However, epigenetic remodeling during neuronal reprogramming has not been well reconciled with transcriptional regulation. Here we show that NeuroD1 achieves direct neuronal conversion from mouse microglia both in vitro and in vivo. Exogenous NeuroD1 initially occupies closed chromatin regions associated with bivalent trimethylation of histone H3 at lysine 4 (H3K4me3) and H3K27me3 marks in microglia to induce neuronal gene expression. These regions are resolved to a monovalent H3K4me3 mark at later stages of reprogramming to establish the neuronal identity. Furthermore, the transcriptional repressors Scrt1 and Meis2 are induced as NeuroD1 target genes, resulting in a decrease in the expression of microglial genes. In parallel, the microglial epigenetic signature in promoter and enhancer regions is erased. These findings reveal NeuroD1 pioneering activity accompanied by global epigenetic remodeling for two sequential events: onset of neuronal property acquisition and loss of the microglial identity during reprogramming.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Reprogramación Celular , Epigénesis Genética , Microglía/citología , Neuronas/citología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Células Cultivadas , Cuerpo Estriado/citología , Femenino , Células HEK293 , Código de Histonas , Histonas/química , Histonas/metabolismo , Proteínas de Homeodominio/genética , Proteínas de Homeodominio/metabolismo , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Microglía/metabolismo , Neuronas/metabolismo
17.
Cell Tissue Res ; 371(1): 189-199, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-28695279

RESUMEN

Severe spinal cord injury (SCI) leads to almost complete neural cell loss at the injured site, causing the irreversible disruption of neuronal circuits. The transplantation of neural stem or precursor cells (NS/PCs) has been regarded as potentially effective for SCI treatment because NS/PCs can compensate for the injured sites by differentiating into neurons and glial cells (astrocytes and oligodendrocytes). An understanding of the molecular mechanisms that regulate the proliferation, fate specification and maturation of NS/PCs and their progeny would facilitate the establishment of better therapeutic strategies for regeneration after SCI. In recent years, several studies of SCI animal models have demonstrated that the modulation of specific epigenetic marks by histone modifiers and non-coding RNAs directs the setting of favorable cellular environments that promote the neuronal differentiation of NS/PCs and/or the elongation of the axons of the surviving neurons at the injured sites. In this review, we provide an overview of recent progress in the epigenetic regulation/manipulation of neural cells for the treatment of SCI.


Asunto(s)
Epigénesis Genética , Células-Madre Neurales/fisiología , Células-Madre Neurales/trasplante , Neurogénesis/genética , Traumatismos de la Médula Espinal/terapia , Regeneración de la Medula Espinal , Trasplante de Células Madre , Animales , Astrocitos/citología , Modelos Animales de Enfermedad , Humanos , Ratones , Células-Madre Neurales/citología , Neuronas/citología , Oligodendroglía/citología , Ratas
18.
Cell Rep ; 20(12): 2992-3003, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28930691

RESUMEN

Regulation of the epigenome during in vivo specification of brain stem cells is still poorly understood. Here, we report DNA methylome analyses of directly sampled cortical neural stem and progenitor cells (NS/PCs) at different development stages, as well as those of terminally differentiated cortical neurons, astrocytes, and oligodendrocytes. We found that sequential specification of cortical NS/PCs is regulated by two successive waves of demethylation at early and late development stages, which are responsible for the establishment of neuron- and glia-specific low-methylated regions (LMRs), respectively. The regulatory role of demethylation of the gliogenic genes was substantiated by the enrichment of nuclear factor I (NFI)-binding sites. We provide evidence that de novo DNA methylation of neuron-specific LMRs establishes glia-specific epigenotypes, essentially by silencing neuronal genes. Our data highlight the in vivo implications of DNA methylation dynamics in shaping epigenomic features that confer the differentiation potential of NS/PCs sequentially during development.


Asunto(s)
Linaje de la Célula/genética , Metilación de ADN/genética , Epigenómica , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Factores de Transcripción/metabolismo , Secuencias de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Desmetilación del ADN , Regulación de la Expresión Génica , Ratones Transgénicos , Factores de Transcripción NFI/química , Factores de Transcripción NFI/metabolismo , Neuroglía/metabolismo , Fenotipo , Regiones Promotoras Genéticas/genética , Unión Proteica
19.
Methods Mol Biol ; 1605: 83-103, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28456959

RESUMEN

Development of high-throughput sequencing technologies has uncovered the immensity of the long noncoding RNA (lncRNA) world. Divergently transcribed lncRNAs from bidirectional gene promoters, called promoter-associated noncoding RNAs (pancRNAs), account for ~20% of the total number of lncRNAs, and this major fraction is involved in many biological processes, such as development and cancer formation. Recently, we have found that the pancRNAs activate their partner genes, as represented by the fact that pancIl17d, a pancRNA that is transcribed from the antisense strand of the promoter region of Interleukin 17d (Il17d) at the onset of zygotic gene activation (ZGA), is essential for mouse preimplantation development through Il17d upregulation. The discovery of the expression of a specific set of pancRNAs during ZGA was achieved by using a method that generates directional RNA-seq libraries from small-scale samples. Although there are several methods available for small-scale samples, most of them require a pre-amplification procedure that frequently generates some amplification biases toward a subset of transcripts. We provide here a highly sensitive and reproducible method based on the preparation of directional RNA-seq libraries from as little as 100 mouse oocytes or embryos without pre-amplification for the quantification of lncRNAs as well as mRNAs.


Asunto(s)
Regiones Promotoras Genéticas , ARN Largo no Codificante/genética , Análisis de Secuencia de ARN/métodos , Animales , Desarrollo Embrionario , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Activación Transcripcional
20.
BMC Genomics ; 18(1): 285, 2017 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-28388877

RESUMEN

BACKGROUND: Recent transcriptome analyses have shown that long non-coding RNAs (ncRNAs) play extensive roles in transcriptional regulation. In particular, we have reported that promoter-associated ncRNAs (pancRNAs) activate the partner gene expression via local epigenetic changes. RESULTS: Here, we identify thousands of genes under pancRNA-mediated transcriptional activation in five mammalian species in common. In the mouse, 1) pancRNA-partnered genes confined their expression pattern to certain tissues compared to pancRNA-lacking genes, 2) expression of pancRNAs was significantly correlated with the enrichment of active chromatin marks, H3K4 trimethylation and H3K27 acetylation, at the promoter regions of the partner genes, 3) H3K4me1 marked the pancRNA-partnered genes regardless of their expression level, and 4) C- or G-skewed motifs were exclusively overrepresented between-200 and-1 bp relative to the transcription start sites of the pancRNA-partnered genes. More importantly, the comparative transcriptome analysis among five different mammalian species using a total of 25 counterpart tissues showed that the overall pancRNA expression profile exhibited extremely high species-specificity compared to that of total mRNA, suggesting that interspecies difference in pancRNA repertoires might lead to the diversification of mRNA expression profiles. CONCLUSIONS: The present study raises the interesting possibility that the gain and/or loss of gene-activation-associated pancRNA repertoires, caused by formation or disruption of the genomic GC-skewed structure in the course of evolution, finely shape the tissue-specific pattern of gene expression according to a given species.


Asunto(s)
Evolución Molecular , Mamíferos/genética , Regiones Promotoras Genéticas , ARN no Traducido/genética , Activación Transcripcional , Transcriptoma , Animales , Secuencia de Bases , Epigénesis Genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Histonas/metabolismo , Ratones , Motivos de Nucleótidos , Especificidad de Órganos/genética , ARN Mensajero/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA