RESUMEN
The aim of this study was to investigate dermal delivery of the new active pharmaceutical ingredient (API) TOP-N53 into diabetic foot ulcer using an in vitro wound model consisting of pig ear dermis and elucidate the impact of drug formulation and wound dressing taking into consideration clinical relevance in the home care setting and possible bacterial infection. Different formulation approaches for the poorly water-soluble API including colloidal solubilization, drug micro-suspension and cosolvent addition were investigated; moreover, the effect of (micro-)viscosity of hydrogels used as primary wound dressing on delivery was assessed. Addition of Transcutol® P as cosolvent to water improved solubility and was significantly superior to all other approaches providing a sustained three-day delivery that reached therapeutic drug levels in the tissue. Solubilization in micelles or liposomes, on the contrary, did not boost delivery while micro-suspensions exhibited sedimentation on the tissue surface. Microbial contamination was responsible for considerable metabolism of the drug leading to tissue penetration of metabolites which may be relevant for therapeutic effect. Use of hydrogels under semi-occlusive conditions significantly reduced drug delivery in a viscosity-dependent fashion. Micro-rheologic analysis of the gels using diffusive wave spectroscopy confirmed the restricted diffusion of drug particles in the gel lattice which correlated with the obtained tissue delivery results. Hence, the advantages of hydrogel dressings from the applicatory characteristic point of view must be weighed against their adverse effect on drug delivery. The employed in vitro wound model was useful for the assessment of drug delivery and the development of a drug therapy concept for chronic diabetic foot ulcer. Mechanistic insights about formulation and dressing performance may be applied to drug delivery in other skin conditions such as digital ulcer.
Asunto(s)
Pie Diabético , Hidrogeles , Cicatrización de Heridas , Porcinos , Animales , Cicatrización de Heridas/efectos de los fármacos , Pie Diabético/tratamiento farmacológico , Hidrogeles/química , Sistemas de Liberación de Medicamentos/métodos , Administración Cutánea , Viscosidad , Solubilidad , Vendajes , Química Farmacéutica/métodos , Piel/metabolismo , Piel/efectos de los fármacos , Enfermedad Crónica , Composición de Medicamentos/métodosRESUMEN
The objective of this study was to investigate the mechanisms underlying drug release from a controlled colonic release (CCR) tablet formulation based on a xyloglucan polysaccharide matrix and identify the factors that control the rate of release for the purpose of fundamentally substantiating the concept and demonstrating its robustness for colonic drug delivery. Previous work demonstrated in vitro limited release of 5-aminosalicylic acid (5-ASA) and caffeine from these tablets in small intestinal environment and significant acceleration of release by xyloglucanase, an enzyme of the colonic microbiome. Targeted colonic drug delivery was verified in an animal study in vivo. In the present work, interaction of the xyloglucan matrix tablets with aqueous dissolution media containing xyloglucanase was found to lead to the spontaneous formation of a hydrated highly viscous gummy layer at the surface of the matrix which had a reduced drug content compared to the underlying regions and persisted with a nearly constant thickness that was inversely correlated to the enzyme concentration throughout the duration of the release process. Enzymatic hydrolysis of xyloglucan was determined to take place at the surface of the matrix leading to matrix erosion and a relation for the rate of enzymatic reaction as a function of bulk enzyme concentration and the concentration of dissolved xyloglucan in the gummy layer was derived. A mathematical model was developed encompassing aqueous medium ingress, matrix metamorphosis due to xyloglucan dissolution and matrix swelling, enzymatic hydrolysis of the polysaccharide and concomitant drug release due to matrix erosion and simultaneous drug diffusion. The model was fitted to data of reducing sugar equivalents in the medium reflecting matrix erosion and released drug amount. Enzymatic reaction parameters and reasonable values of medium ingress velocity, xyloglucan dissolution rate constant and drug diffusion coefficient were deduced that provided an adequate approximation of the data. Erosion was shown to be the overwhelmingly dominant drug release mechanism while the role of diffusion marginally increased at low enzyme concentration and high drug solubility. Changing enzyme concentration had a rather weak effect on matrix erosion and drug release rate as demonstrated by model simulations supported by experimental data, while xyloglucan dissolution was slow and had a stronger effect on the rate of the process. Therefore, reproducible colonic drug delivery not critically influenced by inter- and intra-individual variation of microbial enzyme activity may be projected.
Asunto(s)
Colon , Preparaciones de Acción Retardada , Sistemas de Liberación de Medicamentos , Glucanos , Comprimidos , Xilanos , Glucanos/química , Glucanos/metabolismo , Xilanos/metabolismo , Xilanos/química , Colon/metabolismo , Preparaciones de Acción Retardada/química , Sistemas de Liberación de Medicamentos/métodos , Solubilidad , Liberación de Fármacos , HidrólisisRESUMEN
Efficient and reproducible colonic drug delivery remains elusive. The aim of this study was to demonstrate specific colonic delivery in vivo in domestic pigs with a novel tablet formulation based on a dual release control concept using 5-aminosalicylic acid (5-ASA) and caffeine as drug substances. The developed controlled colonic release (CCR) tablet formulation employs a pH-sensitive coating based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, and a xyloglucan-based matrix to inhibit drug release after coating removal in the small intestine and to allow microbiome-triggered drug release by enzymatic action in the colon. CCR tablets were administered to domestic pigs and plasma concentration data was analyzed by physiologically based pharmacokinetic modeling to estimate absorbed amounts from small and large intestine and in vivo drug release rates by model-dependent deconvolution using immediate release (IR) tablets and intravenous solutions as reference. Peak concentration times (tmax) and values (cmax) of CCR 5-ASA and caffeine tablets indicated strongly delayed drug absorption and the deduced absorbed amount as a function of time confirmed absorption overwhelmingly from the large intestine. The microbially cleaved marker molecule sulfasalazine administered alone or together with caffeine in CCR tablets reported, in combination with telemetry measurements, gastrointestinal transit times and site of absorption. Drug release from CCR tablets was inferred to take place predominantly at the site of absorption at a release rate of caffeine that was much larger in the colon than in the small intestine indicating enzymatically triggered release by the colonic microbiome. Xyloglucanase activity in rectal and cecal samples was consistent with release data and compound recovery in fecal droppings was consistent with 5-ASA bioavailability. The results provide evidence that the developed formulation can prevent premature drug release and provide targeted colonic drug delivery. Clinical relevance based on the comparability between pig and man is discussed.
Asunto(s)
Cafeína , Sus scrofa , Porcinos , Animales , Sistemas de Liberación de Medicamentos , Comprimidos , Preparaciones de Acción Retardada , Colon , MesalaminaRESUMEN
Aim of this study was to develop a tablet formulation for targeted colonic drug release by implementing two control mechanisms: A pH-sensitive coating layer based on Eudragit® FS 30 D to prevent drug release in the upper gastrointestinal tract, combined with a matrix based on plant-derived polysaccharide xyloglucan to inhibit drug release after coating removal in the small intestine and to allow microbiome triggered drug release in the colon. In vitro dissolution tests simulated the passage through the entire gastrointestinal tract with a four-stage protocol, including microbial xyloglucanase addition in physiologically relevant concentrations as microbiome surrogate to the colonic dissolution medium. Matrix erosion was monitored in parallel to drug release by measurement of reducing sugar equivalents resulting from xyloglucan hydrolysis. Limited drug release in gastric and small intestinal test stages and predominant release in the colonic stage was achieved. The xyloglucan matrix controlled drug release after dissolution of the enteric coating through the formation of a gummy polysaccharide layer at the tablet surface. Matrix degradation was dependent on enzyme concentration in the colonic medium and significantly accelerated drug release resulting in erosion-controlled release process. Drug release at physiologically relevant enzyme concentration was completed within the bounds of colonic transit time. The dual control concept was applicable to two drug substances with different solubility, providing similar release rates in colonic environment containing xyloglucanase. Drug solubility mechanistically affected release, with diffusion of caffeine, but not of 5-ASA, contributing to the overall release rate out of the matrix tablet.
Asunto(s)
Química Farmacéutica , Sistemas de Liberación de Medicamentos , Química Farmacéutica/métodos , Comprimidos/metabolismo , Colon/metabolismo , Solubilidad , Polisacáridos , Concentración de Iones de HidrógenoRESUMEN
A small-scale two-stage biphasic system, a small-scale two-stage dissolution-permeation system, the Erweka mini-paddle apparatus, and the BioGIT system were evaluated for their usefulness in assessing the intraluminal performance of two low solubility drugs in the fasted state, one with weakly acidic properties (tested in a salt form, diclofenac potassium) and one with weakly alkaline properties [ritonavir, tested as an amorphous solid dispersion (ASD) formulation]. In all in vitro methods, an immediate-release tablet and a powder formulation of diclofenac potassium were both rapidly dissolved in Level II biorelevant media simulating the conditions in the upper small intestine. Physiologically based biopharmaceutics (PBB) modelling for the tablet formulation resulted in a successful simulation of the average plasma profile in adults, whereas for the powder formulation modelling indicated that gastric emptying and transport through the intestinal epithelium limit the absorption rates. Detailed information on the behaviour of the ritonavir ASD formulation under both simulated gastric and upper small intestinal conditions were crucial for understanding the luminal performance. PBB modelling showed that the dissolution and precipitation parameters, estimated from the Erweka mini-paddle apparatus data and the small-scale two-stage biphasic system data, respectively, were necessary to adequately simulate the average plasma profile after administration of the ritonavir ASD formulation. Simulation of the gastrointestinal transfer process from the stomach to the small intestine was necessary to evaluate the effects of hypochlorhydric conditions on the luminal performance of the ritonavir ASD formulation. Based on this study, the selection of the appropriate in vitro method for evaluating the intraluminal performance of ionisable lipophilic drugs depends on the characteristics of the drug substance. The results suggest that for (salts of) acidic drugs (e.g., diclofenac potassium) it is only an issue of availability and ease of operation of the apparatus. For weakly alkaline substances (e.g., ritonavir), the results indicate that the dynamic dissolution process needs to be simulated, with the type of requested information (e.g., dissolution parameters, precipitation parameters, luminal concentrations) being key for selecting the most appropriate method. Regardless of the ionisation characteristics, early in the drug development process the use of small-scale systems may be inevitable, due to the limited quantities of drug substance available.
Asunto(s)
Ayuno , Administración Oral , Técnicas In Vitro , Solubilidad , ComprimidosRESUMEN
3D-printing technologies such as Fused Deposition Modeling (FDM) bring a unique opportunity for personalized and flexible near-patient production of pharmaceuticals, potentially improving safety and efficacy for some medications. However, FDM-printed tablets often exhibit tendency for slow dissolution due to polymer erosion-based dissolution mechanisms. Development of immediate release (IR) 3D-printed dosage with poorly water-soluble compounds is even more challenging but necessary to ensure wide applicability of the technology within pharmaceutical development portfolios. In this work, process and morphology were considered to achieve IR of BCS class IV compound lumefantrine as model active pharmaceutical ingredient (API) using basic butylated methacrylate copolymer (Eudragit EPO) as matrix former, as well as hydrophilic plasticizer xylitol and pore former maltodextrin. Grid-designed tablets with size acceptable for children from 6 years old and varying programmed infill density were successfully 3D-printed with 5% lumefantrine while higher drug load led to increased brittleness which is incompatible with 3D-printing. Lumefantrine assay was 92 to 97.5% of theoretical content depending on drug load and process parameters. 3D-printed tablets with 65% infill density met rapid release criteria, while 80% and 100% showed slower dissolution. Structural characteristics of 3D-printed tablets with non-continuous surface such as accessible porosity and specific surface area by weight and by volume were quantified by a non-destructive automated µCT-based methodology and were found to correlate with dissolution rate. Increase in accessible porosity, total surface area, specific surface area and decrease in relative density were statistically significant critical factors for modification of lumefantrine dissolution rate. Crystallinity in manufactured tablets and filaments was explored by highly sensitive Raman mapping technique. Lumefantrine was present in the fully amorphous state in the tablets exhibiting adequate stability for on-site manufacturing. The study demonstrates feasibility of immediate release FDM-3D-printed tablets with BCS class IV API and illustrates the correlation of FDM design parameters with morphological and dissolution characteristics of manufactured tablets.
Asunto(s)
Tecnología Farmacéutica , Agua , Niño , Liberación de Fármacos , Humanos , Impresión Tridimensional , Solubilidad , ComprimidosRESUMEN
Pharmaceutical 3D-printing represents a potentially new dosing and manufacturing approach for the pharmaceutical industry, with unique opportunities for personalization of dosage strengths. Fused deposition modelling (FDM) is a 3D-printing technique, which presents advantages for decentralized on-site manufacturing in hospitals and pharmacies. This study introduces industrially relevant development of formulations for filaments with the required mechanical properties to be 3D-printable and providing immediate release (IR) dosage forms using safe materials approved also for pediatric use. Hydroxypropyl-cellulose (HPC) SSL was chosen as hydrophilic polymer and caffeine with a load of 5-20% as thermally stable model drug. Poly-(vinyl pyrrolidone-vinyl acetate) copolymer (Kollidon VA64) and poly-(vinyl alcohol-polyethylene glycol) graft copolymer (Kollicoat IR) were additional water-soluble polymers tested in combination with HPC and xylitol and polyethylene glycol (PEG) 4000 were evaluated as hydrophilic plasticizers and PEG4000 and maltodextrin as pore formers. Formulations were hot-melt extruded using a scalable twin-screw extruder and 3D-printed into honeycomb geometry solid dosage forms with high (100%) and low (80%) infill density. Rapid or very rapid release was achieved via formulation selection and tablet design parameters. PEG4000 in combination with Kollidon VA64 demonstrated superior processability and significantly accelerated release properties of the matrix independently of infill density. Lowering caffeine content improved hot-melt extrusion processability for each formulation but prolonged dissolution. The use of Kollicoat IR resulted in superior mechanical properties of the manufactured filaments, with easy handling and successful 3D-printing for drug load of 5 to 20%. For most formulations, lowering infill density of 3D-printed tablets yielded faster drug dissolution in agreement with the literature. However, the extent of the infill density effect varied depending on formulation. Caffeine was present in stable crystalline state in 3D-printed tablets. Printing temperature appeared to be critical for drug dissolution in vitro. This wide-ranging excipient investigation epitomizes the beginning of a toolbox approach targeting FDM processability in combination with immediate release characteristics of personalized dosage forms.
Asunto(s)
Excipientes , Tecnología de Extrusión de Fusión en Caliente , Niño , Liberación de Fármacos , Humanos , Impresión Tridimensional , Comprimidos , Tecnología FarmacéuticaRESUMEN
Besides deposition, pulmonary bioavailability is determined by dissolution of particles in the scarce epithelial fluid and by cellular API uptake. In the present work, we have developed an experimental in vitro model, which is combining the state-of-the-art next generation impactor (NGI), used for aerodynamic performance assessment of inhalation products, with a culture of human alveolar A549 epithelial cells to study the fate of inhaled drugs following lung deposition. The goal was to investigate five previously developed nano-milled and spray-dried budesonide formulations and to examine the suitability of the in vitro test model. The NGI dissolution cups of stages 3, 4, and 5 were transformed to accommodate cell culture inserts while assuring minimal interference with the air flow. A549 cells were cultivated at the air-liquid interface on Corning® Matrigel® -coated inserts. After deposition of aerodynamically classified powders on the cell cultures, budesonide amount was determined on the cell surface, in the interior of the cell monolayer, and in the basal solution for four to eight hours. Significant differences in the total deposited drug amount and the amount remaining on the cell surface at the end of the experiment were found between different formulations and NGI stages. Roughly 50% of budesonide was taken up by the cells and converted to a large extent to its metabolic conjugate with oleic acid for all formulations and stages. Prolonged time required for complete drug dissolution and cell uptake in case of large deposited powder amounts suggested initial drug saturation of the surfactant layer of the cell surface. Discrimination between formulations with respect to time scale of dissolution and cell uptake was possible with the present test model providing useful insights into the biopharmaceutical performance of developed formulations that may be relevant for predicting local bioavailability. The absolute quantitative result of cell uptake and permeation into the systemic compartment is unreliable, though, because of partly compromised cell membrane integrity due to particle impaction and professed leakiness of A549 monolayer tight junctions, respectively.
Asunto(s)
Broncodilatadores/metabolismo , Budesonida/metabolismo , Colágeno/metabolismo , Composición de Medicamentos/métodos , Laminina/metabolismo , Proteoglicanos/metabolismo , Mucosa Respiratoria/metabolismo , Células A549 , Broncodilatadores/administración & dosificación , Budesonida/administración & dosificación , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Colágeno/administración & dosificación , Combinación de Medicamentos , Humanos , Laminina/administración & dosificación , Proteoglicanos/administración & dosificación , Mucosa Respiratoria/efectos de los fármacos , SolubilidadRESUMEN
A small-scale biphasic dissolution setup and a small-scale dissolution-permeation (D-P) setup were evaluated for their usefulness in simulating the luminal precipitation of three lipophilic weak bases-dipyridamole, ketoconazole and itraconazole. The transition from the gastric to intestinal environment was incorporated into both experimental procedures. Emulsification during the biphasic dissolution experiments had a minimal impact on the data, when appropriate risk mitigation steps were incorporated. Precipitation parameters estimated from the in vitro data were inputted into the Simcyp® physiologically based pharmacokinetic (PBPK) modelling software and simulated human plasma profiles were compared with previously published pharmacokinetic data. Average Cmax and AUC values estimated using experimentally derived precipitation parameters from the biphasic experiments deviated from corresponding published actual values less than values estimated using the default simulator parameters for precipitation. The slow rate of transport through the biomimetic membrane in the D-P setup limited its usefulness in forecasting the rates of in vivo precipitation used in the modelling of average plasma profiles.
RESUMEN
Direct powder three-dimensional (3D)-printing (DPP) of tablets to simplify fused deposition modelling (FDM) was explored. The FDM paradigm involving hot-melt extrusion for making 3D-printable drug-loaded filaments as intermediate products for tablet manufacturing has been gaining attention for the decentralized on-site production of personalized dosage forms. For direct 3D-printing, powder blends were loaded into a cartridge-like head and were successfully printed with honeycomb design following heating of the extrusion cartridge. This 1-step DPP with incorporation of in-built porosity providing higher surface area served as proof of concept for manufacture of rapid release dosage forms. Water soluble hydroxypropylcellulose SSL was chosen as matrix former and caffeine as model drug. The effect of PEG4000 as plasticizer/pore former and Kollidon VA64 as rapidly dissolving polymer on DPP processability and dissolution rate was investigated. Directly 3D-printed tablets with low (30%) infill density showed rapid dissolution independently of the formulation, whereas for high (80%) infill density a combination of PEG4000 and Kollidon VA64 was required to achieve rapid release. The obtained tablets demonstrated good uniformity of percent drug content but had variable weight. Caffeine was present in crystalline state and in the stable polymorph in the tablets. Hence, DPP feasibility for immediate release dosage form manufacture was demonstrated. This technique might create an opportunity to avoid hot-melt extrusion allowing 3D-printing independently of mechanical properties of a filament and potentially prolonging product shelf life by reducing thermal stress.
Asunto(s)
Composición de Medicamentos/métodos , Polvos/química , Cafeína/química , Celulosa/análogos & derivados , Celulosa/química , Formas de Dosificación , Liberación de Fármacos/efectos de los fármacos , Excipientes/química , Estudios de Factibilidad , Plastificantes/química , Polietilenglicoles/química , Polímeros/química , Porosidad/efectos de los fármacos , Impresión Tridimensional , Solubilidad/efectos de los fármacos , Comprimidos/químicaRESUMEN
We combined high-energy wet media milling and spray drying to engineer dry powders for inhalation consisting of geometrically large, low-density particles with superior aerodynamic properties and fast dissolution. Peclet number proved to be a useful instrument to guide choice of the additives and process conditions for generating low-density powders by spray drying. Composite dry powders consisted of milled and stabilized budesonide nanoparticles, leucine or albumin as matrix formers, and ammonium carbonate as a pore former. Powders of different composition showed fairly large and comparable geometric particle sizes (de,50â¯>â¯4.4⯵m) with effective densities strongly depending on the present matrix former. Powders with lowest density reached an aerosol performance of up to 60%, which is well above most commercial, carrier-based products. It was also demonstrated that the nanomilling step was indispensable to yield such good aerosol performance. Dissolution of aerodynamically classified particle fractions showed a very fast onset and was largely completed within 30â¯min irrespective of the formulation and the impactor stage. Mathematical kinetic modeling was used to deduce the API dissolution rate coefficient from the results obtained using a modified USP 2 apparatus. Dissolution rate was found to be determined by the properties of the API nanoparticles rather than those of the composite particles. The employment of industrially established, solely water-based processes allows introducing the presented approach as a platform technology for the development of well-performing pulmonary formulations.
Asunto(s)
Budesonida/farmacocinética , Composición de Medicamentos/métodos , Excipientes/química , Modelos Biológicos , Nanopartículas/química , Administración por Inhalación , Aerosoles , Budesonida/administración & dosificación , Budesonida/química , Química Farmacéutica , Desecación , Liberación de Fármacos , Humanos , Pulmón/metabolismo , Enfermedades Pulmonares/tratamiento farmacológico , Tamaño de la Partícula , Polvos , Propiedades de SuperficieRESUMEN
Amorphous solid dispersions (ASDs) represent an important formulation technique to achieve supersaturation in gastrointestinal fluids and to enhance absorption of poorly water-soluble drugs. Drug release from such systems is complex due to emergence of different colloidal structures and potential drug precipitation, which can occur in parallel to absorption. The latter drug uptake from the intestinal lumen can be simulated by an organic layer in a biphasic in vitro test, which was employed in this work to mechanistically study the release of ketoconazole from ASDs produced by hot melt extrusion using different HPMCAS grades. A particular aim was to introduce diffusing wave spectroscopy (DWS) to biopharmaceutical testing of solid dispersions. Results indicated that amorphous formulations prevented crystallization of the weakly basic drug upon transfer into the intestinal medium. Microrheological differences among polymer grades and plasticizers were revealed in the aqueous phase, which affected drug release and subsequently uptake into the organic layer. The results indicate that DWS can be employed as a new non-invasive tool to better understand drug release from solid dispersions. This novel light scattering technique is highly promising for future biopharmaceutical research on supersaturating systems such as solid dispersions.
Asunto(s)
Liberación de Fármacos , Cetoconazol/química , Metilcelulosa/análogos & derivados , Análisis Espectral/métodos , Metilcelulosa/química , Reología , SuspensionesRESUMEN
The potential of the force control agent magnesium stearate (MgSt) to enhance the aerosol performance of lactose-based dry powder inhaled (DPI) formulations was investigated in this study. The excipient-blends were investigated with analytical techniques including time-of-flight secondary ion mass spectrometry and single particle aerosol mass spectrometry (SPAMS), and particle size, morphology, and surface properties were evaluated. Excipient-blends were manufactured either by high-shear or low-shear blending lactose carrier with different amounts of MgSt in the range from 0% to 10% (w/w). Fluticasone propionate (FP) and salmeterol xinafoate (SX) used as model active pharmaceutical ingredients were added by low-shear mixing. The in vitro aerosol performance in terms of aerodynamic particle size distribution and fine particle fraction (FPF) of the FP and SX DPI formulations was evaluated with the Next Generation Impactor and also with SPAMS using a Breezhaler® inhalation device. The distribution of MgSt on the lactose carrier in the blends was visualized and found to depend strongly on the blending method. This affected drug particle detachment from the carrier and thus impacted aerosol performance for FP and SX. Compared with blends without force control agent, low-shear blending of MgSt increases the FPF of the model drug SX, whereas high-shear blending significantly increased FPF of both SX and FP. The interactions between drug and carrier particles were substantially affected by the choice of blending technique of MgSt with lactose. This allows detailed control of aerosol performance of a DPI by an adequate choice of the blending technique. SPAMS successfully demonstrated that it is capable to distinguish changes in DPI formulations blended with different amounts of MgSt, and additional information in terms of dispersibility of fine particles could be generated.
Asunto(s)
Aerosoles/química , Polvos/química , Ácidos Esteáricos/química , Administración por Inhalación , Química Farmacéutica/métodos , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Inhaladores de Polvo Seco/métodos , Excipientes/química , Lactosa/química , Tamaño de la Partícula , Propiedades de SuperficieRESUMEN
INTRODUCTION: Multicompartment compliance aids (MCA) are widely used by patients. They support the management of medication and reduce unintentional nonadherence. MCA are filled with medicines unpacked from their original packaging. Swiss pharmacists currently provide MCA for 1-2 weeks, although little and controversial information exists on the stability of repackaged medicines. OBJECTIVE: We aimed to validate the usefulness of a simple screening method capable of detecting visual stability problems with repackaged medicines. METHODS: We selected eight criteria for solid formulations from The International Pharmacopoeia: (1) rough surface, (2) chipping, (3) cracking, (4) capping, (5) mottling, (6) discoloration, (7) swelling, and (8) crushing. A selection of 24 critical medicines was repackaged in three different MCA (Pharmis®, SureMed™, and self-produced blister) and stored at room temperature for 4 weeks. Pharmis® was additionally stored at accelerated conditions. Appearance was scored weekly. RESULTS: Six alterations (rough surface, cracking, mottling, discoloration, swelling, and crushing) were observed at accelerated conditions. No alteration was observed at room temperature, except for the chipping of tablets that had been stuck to cold seal glue. CONCLUSION: The eight criteria can detect alterations of the appearance of oral solid medicines repackaged in MCA. In the absence of specific guidelines, they can serve as a simple screening method in community pharmacies for identifying medicines unsuitable for repackaging.
RESUMEN
Particle co-associations between the active pharmaceutical ingredients fluticasone propionate and salmeterol xinafoate were examined in dry powder inhaled (DPI) and metered dose inhaled (MDI) combination products. Single Particle Aerosol Mass Spectrometry was used to investigate the particle interactions in Advair Diskus® (500/50 mcg) and Seretide® (125/25 mcg). A simple rules tree was used to identify each compound, either alone or co-associated at the level of the individual particle, using unique marker peaks in the mass spectra for the identification of each drug. High levels of drug particle co-association (fluticasone-salmeterol) were observed in the aerosols emitted from Advair Diskus® and Seretide®. The majority of the detected salmeterol particles were found to be in co-association with fluticasone in both tested devices. Another significant finding was that rather coarse fluticasone particles (in DPI) and fine salmeterol particles (both MDI and DPI) were forming the particle co-associations.
Asunto(s)
Combinación Fluticasona-Salmeterol/química , Agonistas de Receptores Adrenérgicos beta 2/química , Aerosoles , Broncodilatadores/química , Inhaladores de Polvo Seco , Glucocorticoides/química , Espectrometría de Masas , Inhaladores de Dosis MedidaRESUMEN
Photoprotection provided by topical sunscreens is expressed by the sun protection factor (SPF) which depends primarily on the UV filters contained in the product and the applied sunscreen amount. Recently, the vehicle was shown to significantly impact film thickness distribution of an applied sunscreen and sunscreen efficacy. In the present work, repartition of the UV filters within the sunscreen film upon application is investigated for its role to affect sun protection efficacy. The spatial repartition of an oil-miscible and a water-soluble UV filter within the sunscreen film was studied using confocal Raman microspectroscopy. Epidermis of pig ear skin was used as substrate for application of three different sunscreen formulations, an oil-in-water emulsion, a water-in-oil emulsion, and a clear lipo-alcoholic spray (CAS) and SPF in vitro was measured. Considerable differences in the repartition of the UV filters upon application and evaporation of volatile ingredients were found between the tested formulations. A nearly continuous phase of lipid-miscible UV filter was formed only for the WO formulation with dispersed aggregates of water-soluble UV filter. OW emulsion and CAS exhibited interspersed patches of the two UV filters, whereas the segregated UV filter domains of the latter formulation were by comparison of a much larger scale and spanned the entire thickness of the sunscreen film. CAS therefore differed markedly from the other two formulations with respect to filter repartition. This difference should be reflected in SPF when the absorption spectra of the employed UV filters are not the same. Confocal Raman microspectroscopy was shown to be a powerful technique for studying this mechanism of sun protection performance of sunscreens.
RESUMEN
The sun protection factor (SPF) depends on UV filter composition, and amount and type of vehicle of the applied sunscreen. In an earlier work, we showed that the vehicle affected the average thickness of sunscreen film that is formed upon application to a skin substrate and that film thickness correlated significantly with SPF in vitro. In the present study, we quantitatively assess the role for sunscreen efficacy of the complete film thickness frequency distribution of sunscreen measured with an oil-in-water cream, an oil-in-water spray, a gel, a water-in-oil, and an alcoholic spray formulation. A computational method is employed to determine SPF in silico from calculated UV transmittance based on experimental film thickness and thickness distribution, and concentration and spectral properties of the UV filters. The investigated formulations exhibited different SPFs in vitro and different film thickness distributions especially in the small thickness range. We found a very good agreement between SPF in silico and SPF in vitro for all sunscreens. This result establishes the relationship between sun protection and the film thickness distribution actually formed by the applied sunscreen and demonstrates that variation in SPF between formulations is primarily due to their film forming properties. It also opens the possibility to integrate the influence of vehicle into tools for in silico prediction of the performance of sunscreen formulations. For this, the use of the Gamma distribution was found to be appropriate for describing film thickness distribution.
Asunto(s)
Vehículos Farmacéuticos , Protectores Solares , Química Farmacéutica , Técnicas In Vitro , Rayos UltravioletaRESUMEN
Nicotine substitution is a mainstay component in smoking cessation schemes. Current products including patches are poorly effective mainly because they do not give smokers the same pharmacokinetic profile of nicotine as cigarette consumption. This work evaluates a new computer operated delivery system for time controlled pulsatile transdermal administration of nicotine in a phase I clinical trial with twelve heavy smoking male volunteers. The device was affixed to the ventral side of the leading lower arm of the subjects and was programmed to deliver two pulses of drug within 16h with three delivery rates in a consecutive dose escalation study. Tolerability of the three increasing doses of nicotine was established. Plasma concentration of nicotine exhibited two peaks and one trough and reached therapeutically effective levels that behaved linearly with the drug load concentration of the device. In vivo input rate, delivered amount and elimination kinetics were deduced by pharmacokinetic modeling to analyze device performance. Timing, dose and duration of delivery were controlled by system operation parameters. Hence, feasibility of controlled pulsatile delivery of nicotine at predetermined intervals was demonstrated. After additional optimization, preprogrammed or on demand administration to meet individualized and circadian replacement needs should improve smoking cessation efficacy.
Asunto(s)
Nicotina/administración & dosificación , Administración Cutánea , Adulto , Estudios de Factibilidad , Humanos , Masculino , Persona de Mediana Edad , Nicotina/sangre , Nicotina/farmacocinética , Fumadores , Adulto JovenRESUMEN
BACKGROUND/AIMS: To determine the roughness of the surface of human skin at highly sun-exposed anatomical sites in a wide age range in order to derive consequences for sunscreen application. METHODS: The forehead, cheek, nose, shoulder, and dorsal hand of 4 age groups (0-9, 20-39, 40-59, and >60 years) were investigated by replica formation, and areal topography was determined by confocal chromatic imaging. The arithmetic mean height as a roughness parameter and the void volume of the surface profile were calculated. RESULTS: Age and site had a significant effect on roughness. Both the dorsal hand and nose exhibited the greatest roughness over the age of 40, and the forehead of the youngest age group exhibited the smallest roughness. Differentiation between sites progressed with age, whereas roughness increased significantly with age for the dorsal hand and nose but not for the other sites. The void volume was smaller than the volume corresponding to the typically recommended amount of sunscreen application except for the cases of largest roughness. CONCLUSIONS: Different site-age combinations show significant variation of skin surface roughness. The application of sunscreen may in some instances need to be adjusted to take into account the increased roughness of highly sun-exposed anatomical sites.
Asunto(s)
Envejecimiento , Piel/anatomía & histología , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Cara , Femenino , Mano , Humanos , Masculino , Persona de Mediana Edad , Hombro , Protectores Solares/administración & dosificación , Propiedades de Superficie , Rayos Ultravioleta , Adulto JovenRESUMEN
Acid-catalyzed transannular cyclization of the germacrene-type sesquiterpene lactone nobilin 1 was investigated with the aim of obtaining new anti-trypanosomal cadinane derivatives. The reaction was regiospecific in all tested reaction conditions. Compounds were fully characterized by spectroscopic and computational methods, and the anti-trypanosomal activity was evaluated and compared to nobilin (IC50 3.19±1.69µM). The tricyclic derivative 11 showed most potent in vitro activity against Trypanosoma brucei rhodesiense bloodstream forms (IC50 0.46±0.01µM). Acid-catalyzed transannular cyclization of natural cyclodecadienes is an efficient strategy to generate new natural product derivatives with anti-protozoal activity.