RESUMEN
Programmed-1 ribosomal frameshifting (-1 PRF) is a translational mechanism adopted by some viruses, including SARS-CoV-2. To find a compound that can inhibit -1 PRF in SARS-CoV-2, we set up a high-throughput screening system using a HeLa cell extract-derived cell-free protein synthesis (CFPS) system. A total of 32,000 compounds were individually incubated with the CFPS system programmed with a -1 PRF-EGFP template. Several compounds were observed to decrease the -1 PRF-driven fluorescence, and one of them had some suppressive effect on -1 PRF of a SARS-CoV-2 genome sequence in transfected cells. Thus the CFPS system can be used as a tool for a high-throughput screening of chemicals.
Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Ensayos Analíticos de Alto Rendimiento , Células HeLa , Biosíntesis de Proteínas , Sistema de Lectura RibosómicoRESUMEN
Nucleotide repeat expansion of GGGGCC (G4C2) in the non-coding region of C9orf72 is the most common genetic cause underlying amyotrophic lateral sclerosis and frontotemporal dementia. Transcripts harboring this repeat expansion undergo the translation of dipeptide repeats via a non-canonical process known as repeat-associated non-AUG (RAN) translation. In order to ascertain the essential components required for RAN translation, we successfully recapitulated G4C2-RAN translation using an in vitro reconstituted translation system comprising human factors, namely the human PURE system. Our findings conclusively demonstrate that the presence of fundamental translation factors is sufficient to mediate the elongation from the G4C2 repeat. Furthermore, the initiation mechanism proceeded in a 5' cap-dependent manner, independent of eIF2A or eIF2D. In contrast to cell lysate-mediated RAN translation, where longer G4C2 repeats enhanced translation, we discovered that the expansion of the G4C2 repeats inhibited translation elongation using the human PURE system. These results suggest that the repeat RNA itself functions as a repressor of RAN translation. Taken together, our utilization of a reconstituted RAN translation system employing minimal factors represents a distinctive and potent approach for elucidating the intricacies underlying RAN translation mechanism.
Asunto(s)
Proteína C9orf72 , Biosíntesis de Proteínas , Extensión de la Cadena Peptídica de Translación , Factores de Elongación de Péptidos/metabolismo , Humanos , Proteína C9orf72/genética , Sistema de Lectura Ribosómico , Iniciación de la Cadena Peptídica Traduccional , Técnicas In Vitro , Células HeLa , Esclerosis Amiotrófica Lateral/genética , Demencia Frontotemporal/genéticaRESUMEN
OBJECTIVES: Recent studies demonstrate that extracellular-released aminoacyl-tRNA synthetases (aaRSs) play unique roles in immune responses and diseases. This study aimed to understand the role of extracellular aaRSs in the pathogenesis of rheumatoid arthritis (RA). METHODS: Primary macrophages and fibroblast-like synoviocytes were cultured with aaRSs. aaRS-induced cytokine production including IL-6 and TNF-α was detected by ELISA. Transcriptomic features of aaRS-stimulated macrophages were examined using RNA-sequencing. Serum and synovial fluid (SF) aaRS levels in patients with RA were assessed using ELISA. Peptidyl arginine deiminase (PAD) 4 release from macrophages stimulated with aaRSs was detected by ELISA. Citrullination of aaRSs by themselves was examined by immunoprecipitation and western blotting. Furthermore, aaRS inhibitory peptides were used for inhibition of arthritis in two mouse RA models, collagen-induced arthritis and collagen antibody-induced arthritis. RESULTS: All 20 aaRSs functioned as alarmin; they induced pro-inflammatory cytokines through the CD14-MD2-TLR4 axis. Stimulation of macrophages with aaRSs displayed persistent innate inflammatory responses. Serum and SF levels of many aaRSs increased in patients with RA compared with control subjects. Furthermore, aaRSs released PAD4 from living macrophages, leading to their citrullination. We demonstrate that aaRS inhibitory peptides suppress cytokine production and PAD4 release by aaRSs and alleviate arthritic symptoms in a mouse RA model. CONCLUSIONS: Our findings uncovered the significant role of aaRSs as a novel alarmin in RA pathogenesis, indicating that their blocking agents are potent antirheumatic drugs.
Asunto(s)
Artritis Experimental , Artritis Reumatoide , Animales , Ratones , Alarminas , Células Cultivadas , Citocinas , Modelos Animales de Enfermedad , Fibroblastos/patología , Inflamación , Líquido Sinovial , HumanosRESUMEN
Robust translation elongation of any given amino acid sequence is required to shape proteomes. Nevertheless, nascent peptides occasionally destabilize ribosomes, since consecutive negatively charged residues in bacterial nascent chains can stochastically induce discontinuation of translation, in a phenomenon termed intrinsic ribosome destabilization (IRD). Here, using budding yeast and a human factor-based reconstituted translation system, we show that IRD also occurs in eukaryotic translation. Nascent chains enriched in aspartic acid (D) or glutamic acid (E) in their N-terminal regions alter canonical ribosome dynamics, stochastically aborting translation. Although eukaryotic ribosomes are more robust to ensure uninterrupted translation, we find many endogenous D/E-rich peptidyl-tRNAs in the N-terminal regions in cells lacking a peptidyl-tRNA hydrolase, indicating that the translation of the N-terminal D/E-rich sequences poses an inherent risk of failure. Indeed, a bioinformatics analysis reveals that the N-terminal regions of ORFs lack D/E enrichment, implying that the translation defect partly restricts the overall amino acid usage in proteomes.
Asunto(s)
Aminoácidos , Proteoma , Humanos , Eucariontes/genética , Péptidos/genética , RibosomasRESUMEN
In vitro reconstitution of whole cellular events is one of the important goals in synthetic biology. Using a cell-free protein synthesis (CFPS) system reconstituted with human translation factors and chaperones, we reproduced the biogenesis of ß-actin, synthesis, folding, and polymerization in a test tube. This system enabled us to define which step of the ß-actin biogenesis was defective in genetic mutations related to diseases. Hence, the CFPS system reconstituted with human factors may be a useful tool for analyzing proteostasis in eukaryotes.
Asunto(s)
Actinas/genética , Chaperonas Moleculares/genética , Mutación/genética , Eucariontes/genética , Polimerizacion , Biosíntesis de Proteínas/genética , Pliegue de Proteína , Proteostasis/genética , Biología Sintética/métodosRESUMEN
The mammalian endoplasmic reticulum (ER) harbors more than 20 members of the protein disulfide isomerase (PDI) family that act to maintain proteostasis. Herein, we developed an in vitro system for directly monitoring PDI- or ERp46-catalyzed disulfide bond formation in ribosome-associated nascent chains of human serum albumin. The results indicated that ERp46 more efficiently introduced disulfide bonds into nascent chains with a short segment exposed outside the ribosome exit site than PDI. Single-molecule analysis by high-speed atomic force microscopy further revealed that PDI binds nascent chains persistently, forming a stable face-to-face homodimer, whereas ERp46 binds for a shorter time in monomeric form, indicating their different mechanisms for substrate recognition and disulfide bond introduction. Thus, ERp46 serves as a more potent disulfide introducer especially during the early stages of translation, whereas PDI can catalyze disulfide formation when longer nascent chains emerge out from ribosome.
RESUMEN
Comprehensive genome-wide analysis has revealed the presence of translational elements in the 3' untranslated regions (UTRs) of human transcripts. However, the mechanisms by which translation is initiated in 3' UTRs and the physiological function of their products remain unclear. This study showed that eIF4G drives the translation of various downstream open reading frames (dORFs) in 3' UTRs. The 3' UTR of GCH1, which encodes GTP cyclohydrolase 1, contains an internal ribosome entry site (IRES) that initiates the translation of dORFs. An in vitro reconstituted translation system showed that the IRES in the 3' UTR of GCH1 required eIF4G and conventional translation initiation factors, except eIF4E, for AUG-initiated translation of dORFs. The 3' UTR of GCH1-mediated translation was resistant to the mTOR inhibitor Torin 1, which inhibits cap-dependent initiation by increasing eIF4E-unbound eIF4G. eIF4G was also required for the activity of various elements, including polyU and poliovirus type 2, a short element thought to recruit ribosomes by base-pairing with 18S rRNA. These findings indicate that eIF4G mediates translation initiation of various ORFs in mammalian cells, suggesting that the 3' UTRs of mRNAs may encode various products.
Asunto(s)
Factor 4G Eucariótico de Iniciación/genética , GTP Ciclohidrolasa/genética , Sistemas de Lectura Abierta/genética , Serina-Treonina Quinasas TOR/genética , Regiones no Traducidas 3'/genética , Factor 4E Eucariótico de Iniciación/genética , Humanos , Naftiridinas/farmacología , Poliovirus/genética , Biosíntesis de Proteínas/genética , Caperuzas de ARN/genética , ARN Mensajero/genética , ARN Ribosómico 18S/genética , Ribosomas/genética , Serina-Treonina Quinasas TOR/antagonistas & inhibidoresRESUMEN
Antizyme (AZ) interacts with ornithine decarboxylase, which catalyzes the first step of polyamine biosynthesis and recruits it to the proteasome for degradation. Synthesizing the functional AZ protein requires transition of the reading frame at the termination codon. This programmed +1 ribosomal frameshifting is induced by polyamines, but the molecular mechanism is still unknown. In this study, we explored the mechanism of polyamine-dependent +1 frameshifting using a human cell-free translation system. Unexpectedly, spermidine induced +1 frameshifting in the mutants replacing the termination codon at the shift site with a sense codon. Truncation experiments showed that +1 frameshifting occurred promiscuously in various positions of the AZ sequence. The probability of this sequence-independent +1 frameshifting increased in proportion to the length of the open reading frame. Furthermore, the +1 frameshifting was induced in some sequences other than the AZ gene in a polyamine-dependent manner. These findings suggest that polyamines have the potential to shift the reading frame in the +1 direction in any sequence. Finally, we showed that the probability of the sequence-independent +1 frameshifting by polyamines is likely inversely correlated with translation efficiency. Based on these results, we propose a model of the molecular mechanism for AZ +1 frameshifting.
Asunto(s)
Sistema de Lectura Ribosómico/genética , Poliaminas/metabolismo , Proteínas/genética , Células HeLa , Humanos , Modelos Genéticos , Proteínas/metabolismoRESUMEN
We developed an in vitro translation system from yeast, reconstituted with purified translation elongation and termination factors and programmed by CrPV IGR IRES-containing mRNA, which functions in the absence of initiation factors. The system is capable of synthesizing the active reporter protein, nanoLuciferase, with a molecular weight of 19 kDa. The protein synthesis by the system is appropriately regulated by controlling its composition, including translation factors, amino acids and antibiotics. We found that a high eEF1A concentration relative to the ribosome concentration is critically required for efficient IRES-mediated translation initiation, to ensure its dominance over IRES-independent random internal translation initiation.
Asunto(s)
Extensión de la Cadena Peptídica de Translación , Terminación de la Cadena Péptídica Traduccional , Péptidos/metabolismo , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismoRESUMEN
We have recently developed an in vitro yeast reconstituted translation system, which is capable of synthesizing long polypeptides. Utilizing the system, we examined the role of eIF5A and its hypusine modification in translating polyproline sequence within long open reading frames. We found that polyproline motif inserted at the internal position of the protein arrests translation exclusively at low Mg2+ concentrations, and peptidylpolyproline-tRNA intrinsically destabilizes 80S ribosomes. We demonstrate that unmodified eIF5A essentially resolves such ribosome stalling; however, the hypusine modification drastically stimulates ability of eIF5A to rescue polyproline-mediated ribosome stalling and is particularly important for the efficient translation of the N-terminal or long internal polyproline motifs.
Asunto(s)
Biosíntesis de Péptidos , Factores de Iniciación de Péptidos/metabolismo , Péptidos/metabolismo , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/metabolismo , Factores de Iniciación de Péptidos/genética , Péptidos/química , Proteínas de Unión al ARN/genética , Ribosomas/metabolismo , Factor 5A Eucariótico de Iniciación de TraducciónRESUMEN
Translation initiation of hepatitis C virus (HCV) genomic RNA is induced by an internal ribosome entry site (IRES). Our cryoelectron microscopy (cryo-EM) analysis revealed that the HCV IRES binds to the solvent side of the 40S platform of the cap-dependently translating 80S ribosome. Furthermore, we obtained the cryo-EM structures of the HCV IRES capturing the 40S subunit of the IRES-dependently translating 80S ribosome. In the elucidated structures, the HCV IRES "body," consisting of domain III except for subdomain IIIb, binds to the 40S subunit, while the "long arm," consisting of domain II, remains flexible and does not impede the ongoing translation. Biochemical experiments revealed that the cap-dependently translating ribosome becomes a better substrate for the HCV IRES than the free ribosome. Therefore, the HCV IRES is likely to efficiently induce the translation initiation of its downstream mRNA with the captured translating ribosome as soon as the ongoing translation terminates.
Asunto(s)
Factores Eucarióticos de Iniciación/química , Hepacivirus/genética , Iniciación de la Cadena Peptídica Traduccional , ARN Viral/química , Subunidades Ribosómicas Grandes de Eucariotas/ultraestructura , Subunidades Ribosómicas Pequeñas de Eucariotas/ultraestructura , Sitios de Unión , Microscopía por Crioelectrón , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Células HEK293 , Hepacivirus/metabolismo , Interacciones Huésped-Patógeno , Humanos , Sitios Internos de Entrada al Ribosoma , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Viral/genética , ARN Viral/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismoRESUMEN
A class of translation inhibitors, exemplified by the natural product rocaglamide A (RocA), isolated from Aglaia genus plants, exhibits antitumor activity by clamping eukaryotic translation initiation factor 4A (eIF4A) onto polypurine sequences in mRNAs. This unusual inhibitory mechanism raises the question of how the drug imposes sequence selectivity onto a general translation factor. Here, we determined the crystal structure of the human eIF4A1â ATP analogâ RocAâ polypurine RNA complex. RocA targets the "bi-molecular cavity" formed characteristically by eIF4A1 and a sharply bent pair of consecutive purines in the RNA. Natural amino acid substitutions found in Aglaia eIF4As changed the cavity shape, leading to RocA resistance. This study provides an example of an RNA-sequence-selective interfacial inhibitor fitting into the space shaped cooperatively by protein and RNA with specific sequences.
Asunto(s)
Benzofuranos/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Biosíntesis de Proteínas , Inhibidores de la Síntesis de la Proteína/metabolismo , ARN/metabolismo , Ribosomas/metabolismo , Adenilil Imidodifosfato/química , Adenilil Imidodifosfato/metabolismo , Aglaia/química , Aglaia/genética , Aglaia/metabolismo , Sustitución de Aminoácidos , Benzofuranos/química , Benzofuranos/aislamiento & purificación , Benzofuranos/farmacología , Sitios de Unión , Resistencia a Medicamentos/genética , Factor 4A Eucariótico de Iniciación/química , Factor 4A Eucariótico de Iniciación/genética , Células HEK293 , Humanos , Modelos Moleculares , Estructura Molecular , Mutación , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Biosíntesis de Proteínas/efectos de los fármacos , Biosíntesis de Proteínas/genética , Dominios y Motivos de Interacción de Proteínas , Inhibidores de la Síntesis de la Proteína/química , Inhibidores de la Síntesis de la Proteína/aislamiento & purificación , Inhibidores de la Síntesis de la Proteína/farmacología , ARN/química , Ribosomas/química , Ribosomas/efectos de los fármacos , Ribosomas/genética , Relación Estructura-ActividadRESUMEN
The 2'-5'-oligoadenylate synthetase (OAS)/RNase L pathway is an innate immune system that protects hosts against pathogenic viruses and bacteria through cleavage of exogenous single-stranded RNA; however, this system's selective targeting mechanism remains unclear. Here, we identified an mRNA quality control factor Dom34 as a novel restriction factor for a positive-sense single-stranded RNA virus. Downregulation of Dom34 and RNase L increases viral replication, as well as half-life of the viral RNA. Dom34 directly binds RNase L to form a surveillance complex to recognize and eliminate the exogenous RNA in a manner dependent on translation. Interestingly, the feature detected by the surveillance complex is not the specific sequence of the viral RNA but the 'exogenous nature' of the RNA. We propose the following model for the selective targeting of exogenous RNA; OAS3 activated by the exogenous RNA releases 2'-5'-oligoadenylates (2-5A), which in turn converts latent RNase L to an active dimer. This accelerates formation of the Dom34-RNase L surveillance complex, and its selective localization to the ribosome on the exogenous RNA, thereby promoting degradation of the RNA. Our findings reveal that the selective targeting of exogenous RNA in antiviral defense occurs via a mechanism similar to that in the degradation of aberrant transcripts in RNA quality control.
Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Endonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Transducción de Señal/genética , Virosis/genética , Virus/genética , Nucleótidos de Adenina/genética , Nucleótidos de Adenina/metabolismo , Endonucleasas/genética , Endorribonucleasas/genética , Regulación Viral de la Expresión Génica , Humanos , Proteínas Nucleares/genética , Oligorribonucleótidos/genética , Oligorribonucleótidos/metabolismo , Estabilidad del ARN/genética , ARN Bicatenario/genética , ARN Viral/genética , Ribosomas/genética , Ribosomas/virología , Virosis/virología , Replicación Viral/genética , Virus/patogenicidadRESUMEN
Eukaryotic mRNA has a cap structure and a poly(A) tail at the 5' and 3' ends, respectively. The cap structure is recognized by eIF (eukaryotic translation initiation factor) 4 F, while the poly(A) tail is bound by poly(A)-binding protein (PABP). PABP has four RNA recognition motifs (RRM1-4), and RRM1-2 binds both the poly(A) tail and eIF4G component of eIF4F, resulting in enhancement of translation. Here, we show that PABP interacts with the 40S and 60S ribosomal subunits dynamically via RRM2-3 or RRM3-4. Using a reconstituted protein expression system, we demonstrate that wild-type PABP activates translation in a dose-dependent manner, while a PABP mutant that binds poly(A) RNA and eIF4G, but not the ribosome, fails to do so. From these results, functional significance of the interaction of PABP with the ribosome is discussed.
Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Ribosomas/química , Relación Estructura-ActividadRESUMEN
A subset of the proteome is prone to aggregate formation, which is prevented by chaperones in the cell. To investigate whether the basic principle underlying the aggregation process is common in prokaryotes and eukaryotes, we conducted a large-scale aggregation analysis of ~500 cytosolic budding yeast proteins using a chaperone-free reconstituted translation system, and compared the obtained data with that of ~3,000 Escherichia coli proteins reported previously. Although the physicochemical properties affecting the aggregation propensity were generally similar in yeast and E. coli proteins, the susceptibility of aggregation in yeast proteins were positively correlated with the presence of intrinsically disordered regions (IDRs). Notably, the aggregation propensity was not significantly changed by a removal of IDRs in model IDR-containing proteins, suggesting that the properties of ordered regions in these proteins are the dominant factors for aggregate formation. We also found that the proteins with longer IDRs were disfavored by E. coli chaperonin GroEL/ES, whereas both bacterial and yeast Hsp70/40 chaperones have a strong aggregation-prevention effect even for proteins possessing IDRs. These results imply that a key determinant to discriminate the eukaryotic proteomes from the prokaryotic proteomes in terms of protein folding would be the attachment of IDRs.
Asunto(s)
Proteínas de Saccharomyces cerevisiae/metabolismo , Sistema Libre de Células , Chaperonina 60/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Sistemas de Lectura Abierta/genética , Pliegue de Proteína , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/químicaRESUMEN
One of the aims of synthetic biology is bottom-up construction of reconstituted human cells for medical uses. To that end, we generated giant unilamellar vesicles (GUVs) that contained a HeLa cell extract, which comprises a cell-free protein synthesis (CFPS) system. Then we expressed Huntingtin protein fragments that contained polyglutamine (polyQ) sequences (Htt-polyQ), a hallmark of Huntington's disease. That system produced polyQ-dependent protein aggregates, as previously demonstrated in living cells. We next simplified the system by generating GUVs that contained purified human factors, which reconstituted a CFPS system. Htt-polyQ fragments expressed in these GUVs also formed protein aggregates. Moreover, an N-terminal deletion mutant, which had failed to form protein aggregates in living cells, also failed to form protein aggregates in the reconstituted GUVs. Thus, the GUV systems that encapsulated a human CFPS system could serve as reconstituted cells for studying neurological diseases.
Asunto(s)
Proteína Huntingtina , Mutación , Péptidos , Agregación Patológica de Proteínas , Liposomas Unilamelares , Sistema Libre de Células/química , Sistema Libre de Células/metabolismo , Células HeLa , Humanos , Proteína Huntingtina/química , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Péptidos/química , Péptidos/genética , Péptidos/metabolismo , Agregación Patológica de Proteínas/genética , Agregación Patológica de Proteínas/metabolismo , Liposomas Unilamelares/química , Liposomas Unilamelares/metabolismoRESUMEN
Protein misfolding and aggregation is one of the major causes of neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease and Huntington's disease. So far protein aggregation related to these diseases has been studied using animals, cultured cells or purified proteins. In this study, we show that a newly synthesized polyglutamine protein implicated in Huntington's disease forms large aggregates in HeLa cells, and successfully recapitulate the process of this aggregation using a translation-based system derived from HeLa cell extracts. When the cell-free translation system was pre-incubated with recombinant human cytosolic chaperonin CCT, or the Hsc70 chaperone system (Hsc70s: Hsc70, Hsp40, and Hsp110), aggregate formation was inhibited in a dose-dependent manner. In contrast, when these chaperone proteins were added in a post-translational manner, aggregation was not prevented. These data led us to suggest that chaperonin CCT and Hsc70s interact with nascent polyglutamine proteins co-translationally or immediately after their synthesis in a fashion that prevents intra- and intermolecular interactions of aggregation-prone polyglutamine proteins. We conclude that the in vitro approach described here can be usefully employed to analyze the mechanisms that provoke polyglutamine-driven protein aggregation and to screen for molecules to prevent it.
Asunto(s)
Sistema Libre de Células , Chaperonas Moleculares/metabolismo , Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Electroforesis en Gel de Poliacrilamida , Células HeLa , Humanos , Modelos Biológicos , Chaperonas Moleculares/química , Péptidos/químicaRESUMEN
Tight control of protein synthesis is necessary for cells to respond and adapt to environmental changes rapidly. Eukaryotic translation initiation factor (eIF) 2B, the guanine nucleotide exchange factor for eIF2, is a key target of translation control at the initiation step. The nucleotide exchange activity of eIF2B is inhibited by the stress-induced phosphorylation of eIF2. As a result, the level of active GTP-bound eIF2 is lowered, and protein synthesis is attenuated. eIF2B is a large multi-subunit complex composed of five different subunits, and all five of the subunits are the gene products responsible for the neurodegenerative disease, leukoencephalopathy with vanishing white matter. However, the overall structure of eIF2B has remained unresolved, due to the difficulty in preparing a sufficient amount of the eIF2B complex. To overcome this problem, we established the recombinant expression and purification method for eIF2B from the fission yeast Schizosaccharomyces pombe. All five of the eIF2B subunits were co-expressed and reconstructed into the complex in Escherichia coli cells. The complex was successfully purified with a high yield. This recombinant eIF2B complex contains each subunit in an equimolar ratio, and the size exclusion chromatography analysis suggests it forms a heterodecamer, consistent with recent reports. This eIF2B increased protein synthesis in the reconstituted in vitro human translation system. In addition, disease-linked mutations led to subunit dissociation. Furthermore, we crystallized this functional recombinant eIF2B, and the crystals diffracted to 3.0 Å resolution.
Asunto(s)
Factor 2B Eucariótico de Iniciación/metabolismo , Proteínas Recombinantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Cromatografía en Gel , Cristalización , Cristalografía por Rayos X , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Factor 2B Eucariótico de Iniciación/química , Factor 2B Eucariótico de Iniciación/genética , Expresión Génica , Humanos , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genéticaRESUMEN
Cytoplasmic dynein is a macromolecular motor complex with diverse functions in eukaryotic cells. Dynein plays essential roles in intracellular transport of organelles and mitosis, mediated in part by interactions between the dynein intermediate chain 2 (IC-2) subunits and adapter proteins that bind specific cargos. In experiments to identify phosphorylation-dependent binding partners for IC-2 we instead identified a phosphorylation-independent binding partner, the cytosolic chaperonin containing T complex protein 1 (CCT). CCT consists of eight subunits (CCT1-8) and facilitates folding of a subset of newly synthesized proteins. We confirmed interactions between IC-2 and CCT5 and CCT8 in co-immunoprecipitation experiments and determined that the C-terminal half of IC-2 is necessary and sufficient to bind CCT8. Interestingly, co-immunoiprecipitation of IC-2 and CCT is abolished by prior cycloheximide treatment of cells, suggesting that CCT participates in folding of nascent IC-2. In vitro translation experiments employing recombinant CCT complex demonstrated that CCT is able to bind newly synthesized IC-2 after release from the ribosome consistent with a role in folding of IC-2.
Asunto(s)
Chaperonina con TCP-1/metabolismo , Dineínas Citoplasmáticas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Fracciones Subcelulares/metabolismo , Animales , Sitios de Unión , Unión Proteica , Mapeo de Interacción de Proteínas , RatasRESUMEN
Viral particles and virus-like particles (VLPs) or capsids are becoming important vehicles and templates in bio-imaging, drug delivery and materials sciences. Viral particles are prepared by infecting the host organism but VLPs are obtained from cells that express a capsid protein. Some VLPs are disassembled and then re-assembled to incorporate a material of interest. Cell-free systems, which are amenable to manipulating the viral assembly process, are also available for producing viral particles. Regardless of the production system employed, the particles are functionalized by genetic and/or chemical engineering. Here, we review various methods for producing and functionalizing viral particles and VLPs, and we discuss the merits of each system.