RESUMEN
A series of new heterocycles-flanked alkoxyphenanthrenes with D'-D-D' and A-D-A architecture was synthesized for high-performance solution-processable p-channel, n-channel, and ambipolar organic field-effect transistors. The impact of electron-donating and -accepting abilities of the sulfur- and nitrogen-containing heteroaromatics on photophysical, electrochemical, and semiconducting properties was analyzed. The presence of heteroaryl rings improves the extended conjugation, two-dimensional lattices of π-π stacks, and increased molecular interaction of the functionalized phenanthrenes (PN) to allow better self-assembly. The electronically dynamic PN self-assembles into continuous microdomains, forming percolation channels for holes, electrons, or both reliant on functionalization. The low-lying LUMO levels of the compounds enabled ambipolar transport and reduced energy levels for charge injections. Spin-coated devices fabricated using functionalized PN with sulfur-containing heteroaryl substituted PN exhibited the highest hole mobility of 0.85 cm2/(V s) with 108 on/off current ratio. Compounds with A-D-A architecture showed n-channel/ambipolar charge transport, especially napthalimide acceptor substituted PN exhibited n-channel electron mobility of 0.78 cm2/(V s) and an on/off ratio of 106. X-ray diffraction and scanning electron microscopy studies further delineate the impact of efficient packing in the film. Quantum chemistry calculations combined with Marcus-Hush electron transfer theory interpret the transport parameters, and heteroatoms are established to impact the charge mobility intensely.
RESUMEN
This study delves into the therapeutic potential of a molecule, 3-substituted phenyl-1-(pyridine-4-carbonyl)-1H-pyrazole-4-carboxylic acid (PPP), for antimicrobial, antioxidant and anti-diabetic activities. The research encompasses design, synthesis, molecular docking and biological screening of related pyrazole carboxylic acid derivatives. Spectral studies confirmed the structures and molecular mechanics with DFT calculations provided insights into molecular properties and interactions. Quantum chemical descriptors were employed to assess the stability while NBO analysis predicted reactivity, ELF and LOL methods identified electron density. Non-covalent interactions were characterized using RDG and IRI, while the Multiwfn tool was used to evaluate intra and intermolecular aspects. Docking studies elucidated potential therapeutic efficacy against specific protein targets.
RESUMEN
The impact of various substituent moieties on the molecular framework of a conjugated D-A system in resistive switching memory property has been scrutinized through an array of novel D-π-A molecules. The synthesized molecules with triphenylamine (TPA) as the electron donor and dicyanovinylindanone (IC) as the electron acceptor demonstrated substantial non-volatile WORM (Write-Once Read-Many) memory behaviour with appreciable ON/OFF current ratios up to 105 and a lowest recorded threshold voltage of -0.80â V. The well-balanced combination of these potent electron donating and accepting units culminated in exceptional intramolecular charge transfer interactions and minimal band gap values (1.82-2.31â eV) for the molecules, as demonstrated by photophysical and electrochemical investigations. These factors, coupled with the thin-film morphological studies, corroborated the superior performance of the fabricated devices. A longer retention time of 2000s and an endurance of 100 cycles mark the substantial stability of the memory devices. Moreover, conversion from binary to ternary WORM memory was achieved by the effective tuning of the electronic properties of the D-A systems by various substituent moieties. Molecular simulation studies revealed that the resistive switching phenomenon arises from a synergistic interplay of charge transfer and charge trapping processes within these D-A systems.
RESUMEN
A series of novel D-π-A type organic small molecules have been designed, synthesized, and demonstrated for non-volatile resistive switching WORM memory application. The electron-deficient phenazine and quinoxaline units were coupled with various functionalized triphenylamine end caps to explore the structure-property correlations. The photophysical investigations displayed considerable intramolecular charge transfer, and the electrochemical analysis revealed an optimum band gap of 2.44 to 2.83â eV. These factors and the thin film morphological studies suggest the feasibility of the compounds as better resistive memory devices. All the compounds indicated potent non-volatile resistive switching memory capabilities with ON/OFF ratios ranging from 103 to 104, and the lowest threshold voltage recorded stands at -0.74â V. A longer retention time of 103â s marks the substantial stability of the devices. The phenazine-based compounds outperformed the others in terms of memory performance. Exceptionally, the compound with -CHO substituted triphenylamine exhibited ternary memory performance owing to its multiple traps. The resistive switching mechanism for the devices was validated using density functional theory calculations, which revealed that the integrated effect of charge transfer and charge trapping contributes significantly to the resistive switching phenomena.
RESUMEN
Donor-acceptor (D-A)-based architecture has been the key to increase storage capability efficiency through the enhanced charge transportation in the fabricated device. We have designed and synthesized a series of functionalized indoloquinoxalines (IQ) for non-volatile organic memory devices. The investigation on UV-visible spectra reveals the absorption maxima of the compounds around 420â nm, attributed to the intramolecular charge transfer between indole and quinoxaline moiety. The irreversible anodic peak in the 1.0 to 1.5â V range indicates the indole moiety's oxidation ability. Besides, the cathodic peak in the range of -0.5 to -1.0â V, contributed to the stability of the reduced quinoxaline unit. All the compounds exhibited uniformly covered thin film in SEM analysis, potentially facilitating the seamless charge carrier migration between adjacent molecules. The methoxyphenyl substituted compound exhibited the binary write-once read-many (WORM) memory behavior with the lowest threshold voltage of -0.81â V. The molecular simulations displayed the efficient intramolecular charge transfer, providing the fabricated device's distinctive conductive states. Except for the tert-butylphenyl compound, which showed volatile dynamic random-access memory (DRAM) behavior, all the other compounds exhibited non-volatile WORM memory behavior, suggesting IQs potential as an intrinsic D-A molecule in organic memory devices on further structural refinement.
RESUMEN
In this study, we examined the influence of an external electric field applied in two directions: horizontal (X-axis) and vertical (Y-axis) on the electronic and vibrational properties of a field-effect molecular switch, denoted as M. We employed density functional theory and quantum theory of atoms in molecules for this analysis. The current-voltage (I-V) characteristic curve of molecular switch system M was computed by applying the Landauer formula. The results showed that the switching mechanism depends on the direction of the electric field. When the electric field is applied along the X-axis and its intensity is around 0.01 au, OFF/ON switching mechanisms occur. By utilizing electronic localization functions and localized-orbital locator topological analysis, we observed significant intramolecular electronic charge transfer "back and forth" in Au-M-Au systems when compared to the isolated system. The noncovalent interaction revealed that the Au-M-Au complex is also stabilized by electrostatic interactions. However, if the electric field is applied along the Y-axis, a switching mechanism (OFF/ON) occurs when the electric field intensity reaches 0.008 au. Additionally, the local electronic phenomenological coefficients (Lelec) of this field-effect molecular switch were determined by using the Onsager phenomenological approach. It can also be predicted that the molecular electrical conductance (G) increases as Lelec increases. Finally, the electronic and vibrational properties of the proposed models M and Au-M-Au exhibit a powerful switching mechanism that may potentially be employed in a new generation of electronic devices.
RESUMEN
This research describes the preparation of mixtures of new halogen-substituted phenol derivatives and their effects due to linkages with a fatty amide (pentanamide). The molecules were optimized using DFT, and the vibrational and electronic analysis was done subsequently. The energies of frontier molecular orbitals (FMOs) were used to estimate the global chemical reactivity parameters as we suggest that hydrogen-bonded networks may have contributed to the stability and reactivity of the compound. In addition to the experimental investigation, dielectric parameters were calculated. Fukui functions were analyzed to study the chemical reactivity. To get insight into interactions of σ â π* orbitals, natural bond orbital calculations were done. Additionally, surface analysis of the MEP and Hirshfeld charges were performed at the equivalent DFT levels. The research also indicated that both (interaction region indicator) IRI and (electron delocalize range) EDR would proficiently identify chemical-bonding and weak interaction regions, providing a significant advantage in exploring diverse chemical systems and reactions. This indicated that compounds could diffuse through noncovalent interactions, including intramolecular hydrogen bonding. Dielectric relaxation studies taken at five distinct molar ratios identified significant dielectric properties such as ε', εâ³, ε0, and ε∞. The PA with FP, CP, BP, and IP molecules has potential antiviral and antioxidant benefits for carbonic anhydrase, with favorable drug-like features and diverse biological benefits. Pharmacological effects were forecasted using the PASS server, and these molecules exhibited favorable pharmacokinetic properties.
RESUMEN
The design and synthesis of ferrocene-functionalized organic small molecules using quinoline cores are rendered to achieve a ternary write-once-read-many (WORM) memory device. Introducing an electron-withdrawing group into the ferrocene system changes the compounds' photophysical, electrochemical, and memory behavior. The compounds were synthesized with and without an acetylene bridge between the ferrocene unit and quinoline. The electrochemical studies proved the oxidation behavior with a slightly less intense reduction peak of the ferrocene unit, demonstrating that quinolines have more reducing properties than ferrocene with bandgaps ranging from 2.67-2.75 eV. The single crystal analysis of the compounds also revealed good interactive interactions, ensuring good molecular packing. This further leads to a ternary WORM memory with oxidation of the ferrocene units and charge transfer in the compounds. The devices exhibit on/off ratios of 104 and very low threshold voltages of -0.58/-1.02 V with stabilities of 103 s and 100 cycles of all the states through retention and endurance tests.
RESUMEN
To better understand the structure-property relationship and the significance of the donor-acceptor (D-A) system in resistive memory devices, a series of new organic small molecules with A-π-D-π-A- and D-π-D-π-D-based architecture comprising a bis(triphenylamine) core unit and ethynyl-linked electron donor/acceptor arms were designed and synthesized. The devices with A-π-D-π-A structures exhibited write-once-read-many memory behavior with a good retention time of 1000 s while those based on D-π-D-π-D molecules presented only conductor property. The compound with nitrophenyl substitution resulted in a higher ON/OFF current ratio of 104, and the fluorophenyl substitution exhibited the lowest threshold voltage of -1.19 V. Solubility of the compounds in common organic solvents suggests that they are promising candidates for economic solution-processable techniques. Density functional theory calculations were used to envision the frontier molecular orbitals and to support the proposed resistive switching mechanisms. It is inferred that the presence of donor/acceptor substituents has a significant impact on the highest occupied molecular orbital-lowest unoccupied molecular orbital energy levels of the molecules, which affects their memory-switching behavior and thus suggests that a D-A architecture is ideal for memory device resistance switching characteristics.
RESUMEN
A series of new zinc porphyrins were synthesized, and their charge transport property was tuned by introducing various groups. Triarylamine was introduced to the porphyrin moiety at the meso-position as an electron donor, enhancing the charge carrier mobility. All the synthesized zinc porphyrins are thermally stable with a decomposition temperature over 178 °C. High frontier molecular orbitals levels of these compounds make them stable donor materials. SEM analysis of zinc porphyrins fabricated by spin-coating resulted in diversely self-assembled films. Field-effect transistors were fabricated using bottom-gate/top-contact architecture (BGTC) by solution-processable technique. The higher charge carrier mobility of 5.17â cm2 /Vs with on/off of 106 was obtained for trifluoromethyl substituted compound due to better molecular packing. In addition, GIXRD analysis revealed zinc porphyrins films crystalline nature, which supports its better charge carrier mobility. The present investigation has validated that zinc porphyrin building blocks are an attractive candidate for p-channel OFET devices.
RESUMEN
New arylacetylene end-capped alkoxyphenanthrenes were synthesized and demonstrated as the best active layer for solution-processable p-channel organic field-effect transistors. The alkoxy chain embedded compounds exhibited enhanced solubility and induced non-covalent interactions resulting in effective molecular packing. The 'Lewis soft' heteroatoms direct the most stable conformation with dihedral angles possible for molecular interactions, and energy levels. DFT studies supported the fine-tuning of FMOs, with high HOMO levels â¼-5.2â eV ensuring a low barrier for charge injection. OFET devices exhibited a maximum charge carrier mobility up to 1.30â cm2 /Vs with the highest ON/OFF ratio of 107 . The strong π-π interactions and the crystallinity of the films are well supported by GIXRD and SEM analysis.
RESUMEN
This study investigates the influence of aryl and ethynyl linkers as well the effect of various pi-end-groups on the performance of the quinoline-based organic field-effect transistors. A series of new functionalized quinolines with D-π-A-π-D and A-π-A-π-A architectures are designed and synthesized via the Sonagashira cross-coupling reaction. All the new compounds are well characterized and their photophysical properties are studied. The bottom gate-top contact-organic field-effect transistors devices are fabricated using the spin-coating technique. By employing the pre and post-annealing technique, films with uniform surface coverage are obtained. The variation in the end-groups results in versatile packing arrangements which determine their good charge transport properties. The p-channel transistor behavior is observed for all the new compounds. Among the molecules studied, methoxyphenyl and thiophen-2-yl terminal functionalized with D-π-A-π-D architecture exhibit the higher p-channel transistor characteristics with hole mobilities of 1.39 and 1.33 cm2 V-1 s-1 , respectively. The good charge carrier mobilities are supported by an electron-donating methoxy group and thiophene as the end-groups with high highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) levels, extensive π-conjugation, and better self-assembly.
Asunto(s)
Quinolinas , Transistores Electrónicos , Electrones , TiofenosRESUMEN
Facile and efficient solution-processed bottom gate top contact organic field-effect transistor was fabricated by employing the active layer of picene (donor, D) and N,N'-di(dodecyl)-perylene-3,4,9,10-tetracarboxylic diimide (acceptor, A). Balanced hole (0.12 cm2/Vs) and electron (0.10 cm2/Vs) mobility with Ion/off of 104 ratio were obtained for 1:1 ratio of D/A blend. On increasing the ratio of either D or A, the charge carrier mobility and Ion/off ratio improved than that of the pristine molecules. Maximum hole (µmax,h) and electron mobilities (µmax,e) were achieved up to 0.44 cm2/Vs for 3:1 and 0.25 cm2/Vs for 1:3, (D/A) respectively. This improvement is due to the donor phase function as the trap center for minority holes and decreased trap density of the dielectric layer, and vice versa. High ionization potential (- 5.71 eV) of 3:1 and lower electron affinity of (- 3.09 eV) of 1:3 supports the fine tuning of frontier molecular orbitals in the blend. The additional peak formed for the blends at high negative potential of - 1.3 V in cyclic voltammetry supports the molecular level electronic interactions of D and A. Thermal studies supported the high thermal stability of D/A blends and SEM analysis of thin films indicated their efficient molecular packing. Quasi-π-π stacking owing to the large π conjugated plane and the crystallinity of the films are well proved by GIXRD. DFT calculations also supported the electronic distribution of the molecules. The electron density of states (DOS) of pristine D and A molecules specifies the non-negligible interaction coupling among the molecules. This D/A pair has unlimited prospective for plentiful electronic applications in non-volatile memory devices, inverters and logic circuits.
RESUMEN
A series of phenanthroline functionalized triarylamines (TAA) has been designed and synthesised to evaluate their OFET characteristics. Solution processed OFET devices have exhibited p-channel/ambipolar behaviour with respect to the substituents, in particular methoxyphenyl substitution resulted with highest mobility (µ h) up to 1.1 cm2 V-1 s-1 with good I on/off (106) ratio. These compounds can be potentially utilized for the fabrication of electronic devices.