Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Opt Lett ; 48(21): 5787-5790, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37910759

RESUMEN

A coherent XY machine (CXYM) is a physical spin simulator that can simulate the XY model by mapping XY spins onto the continuous phases of non-degenerate optical parametric oscillators (NOPOs). Here, we demonstrated a large-scale CXYM with >47,000 spins by generating 10-GHz-clock time-multiplexed NOPO pulses via four-wave mixing in a highly nonlinear fiber inside a fiber ring cavity. By implementing a unidirectional coupling from the ith pulse to the (i + 1)th pulse with a variable 1-pulse delay planar lightwave circuit interferometer, we successfully controlled the effective temperature of a one-dimensional XY spin network within two orders of magnitude.

2.
Phys Rev E ; 108(2-1): 024307, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37723738

RESUMEN

Partial synchronization is an important dynamical process of coupled oscillators on various natural and artificial networks, which can remain undetected due to the system complexity. With an analogy between pairwise asynchrony of oscillators and topological defects, i.e., vortices, in the two-dimensional XY model, we propose a robust and data-driven method to identify the partial synchronization on complex networks. The proposed method is based on an integer matrix whose element is pseudovorticity that discretely quantifies asynchronous phase dynamics in every two oscillators, which results in graphical and entropic representations of partial synchrony. As a first trial, we apply our method to 200 FitzHugh-Nagumo neurons on a complex small-world network. Partially synchronized chimera states are revealed by discriminating synchronized states even with phase lags. Such phase lags also appear in partial synchronization in chimera states. Our topological, graphical, and entropic method is implemented solely with measurable phase dynamics data, which will lead to a straightforward application to general oscillatory networks including neural networks in the brain.

3.
Sci Adv ; 7(40): eabh0952, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34586855

RESUMEN

Computers based on physical systems are increasingly anticipated to overcome the impending limitations on digital computer performance. One such computer is a coherent Ising machine (CIM) for solving combinatorial optimization problems. Here, we report a CIM with 100,512 degenerate optical parametric oscillator pulses working as the Ising spins. We show that the CIM delivers fine solutions to maximum cut problems of 100,000-node graphs drastically faster than standard simulated annealing. Moreover, the CIM, when operated near the phase transition point, provides some extremely good solutions and a very broad distribution. This characteristic will be useful for applications that require fast random sampling such as machine learning.

4.
Nat Commun ; 12(1): 2325, 2021 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-33893296

RESUMEN

Nonlinear dynamics of spiking neural networks have recently attracted much interest as an approach to understand possible information processing in the brain and apply it to artificial intelligence. Since information can be processed by collective spiking dynamics of neurons, the fine control of spiking dynamics is desirable for neuromorphic devices. Here we show that photonic spiking neurons implemented with paired nonlinear optical oscillators can be controlled to generate two modes of bio-realistic spiking dynamics by changing optical-pump amplitude. When the photonic neurons are coupled in a network, the interaction between them induces an effective change in the pump amplitude depending on the order parameter that characterizes synchronization. The experimental results show that the effective change causes spontaneous modification of the spiking modes and firing rates of clustered neurons, and such collective dynamics can be utilized to realize efficient heuristics for solving NP-hard combinatorial optimization problems.


Asunto(s)
Potenciales de Acción/fisiología , Algoritmos , Modelos Neurológicos , Redes Neurales de la Computación , Neuronas/fisiología , Animales , Simulación por Computador , Humanos , Dinámicas no Lineales , Fotones
5.
Opt Express ; 28(26): 38553-38566, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-33379423

RESUMEN

The minimum requirements for an optical reservoir computer, a recent paradigm for computation using simple algorithms, are nonlinearity and internal interactions. A promising optical system satisfying these requirements is a platform based on coupled degenerate optical parametric oscillators (DOPOs) in a fiber ring cavity. We can expect advantages using DOPOs for reservoir computing with respect to scalability and reduction of excess noise; however, the continuous stabilization required for reservoir computing has not yet been demonstrated. Here, we report the continuous and long-term stabilization of an optical system by introducing periodical phase modulation patterns for DOPOs and a local oscillator. We observed that the Allan variance of the optical phase up to 100 ms was suppressed and that the homodyne measurement signal had a relative standard deviation of 1.4% over 62,500 round trips. The proposed methods represent important technical bases for realizing stable computation on large-scale optical hybrid computers.

6.
Sci Adv ; 5(5): eaau0823, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-31139743

RESUMEN

Physical annealing systems provide heuristic approaches to solving combinatorial optimization problems. Here, we benchmark two types of annealing machines-a quantum annealer built by D-Wave Systems and measurement-feedback coherent Ising machines (CIMs) based on optical parametric oscillators-on two problem classes, the Sherrington-Kirkpatrick (SK) model and MAX-CUT. The D-Wave quantum annealer outperforms the CIMs on MAX-CUT on cubic graphs. On denser problems, however, we observe an exponential penalty for the quantum annealer [exp(-αDW N 2)] relative to CIMs [exp(-αCIM N)] for fixed anneal times, both on the SK model and on 50% edge density MAX-CUT. This leads to a several orders of magnitude time-to-solution difference for instances with over 50 vertices. An optimal-annealing time analysis is also consistent with a substantial projected performance difference. The difference in performance between the sparsely connected D-Wave machine and the fully-connected CIMs provides strong experimental support for efforts to increase the connectivity of quantum annealers.

7.
Nat Commun ; 9(1): 5020, 2018 11 27.
Artículo en Inglés | MEDLINE | ID: mdl-30479329

RESUMEN

Many problems in mathematics, statistical mechanics, and computer science are computationally hard but can often be mapped onto a ground-state-search problem of the Ising model and approximately solved by artificial spin-networks of coupled degenerate optical parametric oscillators (DOPOs) in coherent Ising machines. To better understand their working principle and optimize their performance, we analyze the dynamics during the ground state search of 2D Ising models with up to 1936 mutually coupled DOPOs. For regular as well as frustrated and disordered 2D lattices, the machine finds the correct solution within just a few milliseconds. We determine that calculation performance is limited by freeze-out effects and can be improved by controlling the DOPO dynamics, which allows to optimize performance of coherent Ising machines in various tasks. Comparisons with Monte Carlo simulations reveal that coherent Ising machines behave like low temperature spin systems, thus making them suitable for optimization tasks.

8.
Nat Commun ; 7: 11341, 2016 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-27094083

RESUMEN

A system of ultracold atoms in an optical lattice has been regarded as an ideal quantum simulator for a Hubbard model with extremely high controllability of the system parameters. While making use of the controllability, a comprehensive measurement across the weakly to strongly interacting regimes in the Hubbard model to discuss the quantum many-body state is still limited. Here we observe a great change in the excitation energy spectra across the two regimes in an atomic Bose-Hubbard system by using a spectroscopic technique, which can resolve the site occupancy in the lattice. By quantitatively comparing the observed spectra and numerical simulations based on sum rule relations and a binary fluid treatment under a finite temperature Gutzwiller approximation, we show that the spectra reflect the coexistence of a delocalized superfluid state and a localized insulating state across the two regimes.

9.
Phys Rev Lett ; 112(11): 110501, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24702339

RESUMEN

We propose a method for generating high-fidelity multipartite spin entanglement of ultracold atoms in an optical lattice in a short operation time with a scalable manner, which is suitable for measurement-based quantum computation. To perform the desired operations based on the perturbative spin-spin interactions, we propose to actively utilize the extra degrees of freedom (DOFs) usually neglected in the perturbative treatment but included in the Hubbard Hamiltonian of atoms, such as, (pseudo-)charge and orbital DOFs. Our method simultaneously achieves high fidelity, short operation time, and scalability by overcoming the following fundamental problem: enhancing the interaction strength for shortening the operation time breaks the perturbative condition of the interaction and inevitably induces unwanted correlations among the spin and extra DOFs.

10.
Phys Rev Lett ; 108(25): 255301, 2012 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-23004614

RESUMEN

We investigate the superfluid state of repulsively interacting three-component (color) fermionic atoms in optical lattices. When the anisotropy of the three repulsive interactions is strong, atoms of two of the three colors form Cooper pairs and atoms of the third color remain a Fermi liquid. An effective attractive interaction is induced by density fluctuations of the third-color atoms. This superfluid state is stable against changes in filling close to half filling. We determine the phase diagrams in terms of temperature, filling, and the anisotropy of the repulsive interactions.

11.
Phys Rev Lett ; 105(17): 173002, 2010 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-21231040

RESUMEN

We propose a simple method to detect the antiferromagnetic (AF) state of fermionic atoms in an optical lattice by combining a time-of-flight (TOF) imaging method and a Feshbach resonance. In this scheme, the nontrivial dynamics of fermionic atoms during the imaging process works as a probe with respect to the breaking of the translational symmetry in the AF state. Precise numerical simulations demonstrate that the characteristic oscillatory dynamics induced by the scattering process that transfers an AF ordering vector appears in TOF images, which can be easily observed experimentally.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...