Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Antibiot (Tokyo) ; 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38750248

RESUMEN

A new polyene macrolide, machidamycin (1), and a known compound YS-822A (2), were obtained by physicochemical screening from a culture broth of Streptomyces sp. K22-0017. The structures were elucidated using MS and 1D/2D NMR analyses. Compound 1 exhibited weak antifungal activity against Candida albicans and Mucor racemosus. Furthermore, 1 showed stronger antileishmanial activity than the existing drug paromomycin.

2.
ACS Omega ; 9(15): 17415-17422, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38645345

RESUMEN

Utilizing a binding mode-based physicochemical screening method using d-Ala-d-Ala silica gel, two new macrolactams, named banglactams A (1) and B (2), were discovered from the culture broth of Nonomuraea bangladeshensis K18-0086. In the course of our investigation, we found that d-Ala-d-Ala silica gel precisely differentiated the chemical structures of banglactams and separated them. However, we were not able to obtain enough of 1 to elucidate the structure due to its instability and insolubility. To overcome this challenge, we chemically modified 1 to improve solubility, enabling us to obtain a sufficient material supply for the indirect determination of the structure. Antibacterial activity evaluation of banglactams revealed that 1 binding to d-Ala-d-Ala silica gel exhibited antibacterial activity against Staphylococcus aureus; however, this was not the case with 2. This research indicates the utility of our original binding mode-based PC screening method, and the combination strategy of PC and chemical modifications led us to discover novel antibacterial compounds.

3.
Beilstein J Org Chem ; 20: 497-503, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38440171

RESUMEN

Actinomycetes are well-known as the main producers of bioactive compounds such as antibiotics, anticancers, and immunosuppressants. Screening of natural products from actinomycetes has been an essential part of several drug discovery programs. Finding such novel biologically active metabolites is immensely important because of their beneficial health effects. Recently, the discovery of new compounds has diverted attention to rare actinomycetes, since they are rich sources of natural products. In this study, a collection of rare actinomycetes at Kitasato University has been screened for potential novel compound producers. Among the rare actinomycetes, Saccharopolyspora sp. KR21-0001 isolated from soil on Oha Island, Okinawa, Japan was selected as a potential producer. The strain was cultured in 20 L of production medium in a jar fermenter and the culture broth was extracted. Further purification revealed the presence of a new compound designated KR21-0001A (1). The structure was elucidated by NMR, and the absolute stereochemistry was determined by advanced Marfey's method. The results indicated that 1 is a new analog of dihydroxybenzoic acid. 1 has no antimicrobial activity against bacteria and fungi but showed potent antioxidant activity.

4.
J Antibiot (Tokyo) ; 77(5): 272-277, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38438501

RESUMEN

Two new antimalarial compounds, named prenylpyridones A (1) and B (2), were discovered from the actinomycete cultured material of Streptomyces sp. RBL-0292 isolated from the soil on Hamahiga Island in Okinawa prefecture. The structures of 1 and 2 were elucidated as new iromycin analogs having α-pyridone ring by MS and NMR analyses. Compounds 1 and 2 showed moderate in vitro antimalarial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with IC50 values ranging from 80.7 to 106.7 µM.


Asunto(s)
Antimaláricos , Plasmodium falciparum , Streptomyces , Streptomyces/metabolismo , Antimaláricos/farmacología , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Plasmodium falciparum/efectos de los fármacos , Espectroscopía de Resonancia Magnética , Microbiología del Suelo , Concentración 50 Inhibidora , Piridonas/farmacología , Piridonas/química , Cloroquina/farmacología , Espectrometría de Masas , Estructura Molecular , Resistencia a Medicamentos
5.
J Antibiot (Tokyo) ; 77(5): 315-323, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38491135

RESUMEN

The first report of transmissible carbapenem resistance encoded by blaIMP-1 was discovered in Pseudomonas aeruginosa GN17203 in 1988, and blaIMP-1 has since been detected in other bacteria, including Enterobacterales. Currently, many variants of blaIMPs exist, and point mutations in the blaIMP promoter have been shown to alter promoter strength. For example, the promoter (Pc) of blaIMP-1, first reported in P. aeruginosa GN17203, was a weak promoter (PcW) with low-level expression intensity. This study investigates whether point mutations in the promoter region have helped to create strong promoters under antimicrobial selection pressure. Using bioinformatic approaches, we retrieved 115 blaIMPs from 14,529 genome data of Pseudomonadota and performed multiple alignment analyses. The results of promoter analysis of the 115 retrieved blaIMPs showed that most of them used the Pc located in class 1 integrons (n = 112, 97.4%). The promoter analysis by year revealed that the blaIMP population with the strong promoter, PcS, was transient. In contrast, the PcW-TG population, which had acquired a TGn-extended -10 motif in PcW and had an intermediate promoter strength, gradually spread throughout the world. An inverse correlation between Pc promoter strength and Intl1 integrase excision efficiency has been reported previously [1]. Because of this trade-off, it is unlikely that blaIMPs with strong promoters will increase rapidly, but the possibility that promoter strength will increase with the use of other integrons cannot be ruled out. Monitoring of the blaIMP genes, including promoter analysis, is necessary for global surveillance of carbapenem-resistant bacteria.


Asunto(s)
Regiones Promotoras Genéticas , Pseudomonas aeruginosa , beta-Lactamasas , beta-Lactamasas/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/efectos de los fármacos , Antibacterianos/farmacología , Carbapenémicos/farmacología , Integrones/genética , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Mutación Puntual
6.
J Nat Prod ; 87(4): 994-1002, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38421618

RESUMEN

Three new antiplasmodial compounds, named akedanones A (1), B (2), and C (3), were discovered from the cultured material of Streptomyces sp. K20-0187 isolated from a soil sample collected at Takeda, Kofu, Yamanashi prefecture in Japan. The structures of compounds 1-3 were elucidated as new 2,3-dihydronaphthoquinones having prenyl and reverse prenyl groups by mass spectrometry and nuclear magnetic resonance analyses. Compound 1 and the known furanonaphthoquinone I (4) showed potent in vitro antiplasmodial activity against chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum strains, with half-maximal inhibitory concentration values ranging from 0.06 to 0.3 µM. Compounds 1 and 4 also displayed potent in vivo antiplasmodial activity against drug-sensitive rodent malaria Plasmodium berghei N strain, with inhibition rates of 47.6 and 43.1%, respectively, on intraperitoneal administration at a dose of 5 mg kg-1 day-1 for 4 days.


Asunto(s)
Antimaláricos , Naftoquinonas , Plasmodium berghei , Plasmodium falciparum , Streptomyces , Antimaláricos/farmacología , Antimaláricos/química , Plasmodium falciparum/efectos de los fármacos , Streptomyces/química , Naftoquinonas/farmacología , Naftoquinonas/química , Estructura Molecular , Plasmodium berghei/efectos de los fármacos , Animales , Japón , Ratones , Cloroquina/farmacología , Microbiología del Suelo
7.
Chem Biodivers ; 21(2): e202301834, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38179845

RESUMEN

We discovered a new tetronomycin analog, C-32-OH tetronomycin (2) from the Streptomyces sp. K20-0247 strain, which produces tetronomycin (1). After NMR analysis of 2, we determined the planar structure. Futhermore, the absolute stereochemistry of 2 was deduced based on the biosynthetic pathway of 1 in the K20-0247 strain and a comparison of experimental electronic circular dichroism (ECD) results of 1 with 2. While 2 exihibits potent antibacterial activity aganist Gram-positive baceria including vancomycin-intermediate Staphylococcus aureus (VISA) strains and vancomycin-resistant Enterococci (VRE), the antibacterial activity of 2 shows 16-32-folds weaker than that of 1 suggesting that the C-34 methyl group in 1 is one of the very important functinal group. Moreover, we evaluated the ionophore activity of 1 and 2 and neither compound shows ionophore activity at reasonable concetrations. Our research suggests that 1 and 2 would have different target(s) from an ionophore mechanism in the antibacterial activity and tetronomycins are promising natural products for broad-spectrum antibiotics.


Asunto(s)
Antibacterianos , Éteres , Antibacterianos/farmacología , Bacterias Grampositivas , Ionóforos , Pruebas de Sensibilidad Microbiana
8.
J Antibiot (Tokyo) ; 77(3): 182-184, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38200161

RESUMEN

Peptidoglycan is an important macromolecule in bacterial cell walls to maintain cell integrity, and its biosynthetic pathway has been well studied. Recently, we demonstrated that some bacteria such as Xanthomonas oryzae, a pathogen causing bacterial blight of rice, used an alternative pathway for peptidoglycan biosynthesis. In this pathway, MurD2, a MurD homolog, catalyzed the attachment of L-Glu to UDP-MurNAc-L-Ala and MurL, which did not show homology to any known protein, catalyzed epimerization of the terminal L-Glu of the MurD2 product to generate UDP-MurNAc-L-Ala-D-Glu. Because the alternative pathway also operates in some other plant pathogens and opportunistic pathogens, specific inhibitors of the alternative pathway could function as pesticides and antibiotics for these pathogens. In this study, we searched for specific inhibitors of the alternative pathway from metabolites produced by actinomycetes and identified a new oligomycin-class polyketide, which was revealed to inhibit the MurD2 reaction, in culture broth of Micromonospora sp. K18-0097.


Asunto(s)
Vías Biosintéticas , Peptidoglicano , Peptidoglicano/metabolismo , Oligomicinas/metabolismo , Antibacterianos/farmacología , Antibacterianos/metabolismo , Bacterias/metabolismo , Pared Celular/metabolismo
9.
Front Microbiol ; 14: 1226945, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38053561

RESUMEN

A novel marine actinomycete, designated strain MCN248T, was isolated from the coastal sediment in Songkhla Province, Thailand. Based on the 16S rRNA gene sequences, the new isolate was closely related to Nonomuraea harbinensis DSM45887T (99.2%) and Nonomuraea ferruginea DSM43553T (98.6%). Phylogenetic analyzes based on the 16S rRNA gene sequences showed that strain MCN248T was clustered with Nonomuraea harbinensis DSM45887T and Nonomuraea ferruginea DSM43553T. However, the digital DNA-DNA hybridization analyzes presented a low relatedness of 40.2% between strain MCN248T and the above closely related strains. This strain contained meso-diaminopimelic acid. The acyl type of the peptidoglycan was acetyl, and mycolic acids were absent. The major menaquinones were MK-9(H2) and MK-9(H4). The whole cell sugars consisted of madurose, ribose, mannose, and glucose. Diphosphatidylglycerol, hydroxyl-phosphatidylethanolamine, phosphatidylethanolamine, phosphatidylinositol, and phosphatidylglycerol were detected as the major phospholipids. The predominant cellular fatty acids were iso-C16:0 (40.4%), 10-methyl-C17:0 (22.1%), and C17:1ω8c (10.9%). The DNA G + C content of the genomic DNA was 71.7%. With in silico analyzes, the antiSMASH platform uncovered a diverse 29 secondary metabolite biosynthesis arsenal, including non-ribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) of strain MCN248T, with a high prevalence of gene cluster encoding pathways for the production of anticancer and cytotoxic compounds. Consistently, the crude extract could inhibit colorectal HCT-116 cancer cells at a final concentration of 50 µg/mL. Based on the polyphasic approach, strain MCN248 was designated as a novel species of the genus Nonomuraea, for which the name Nonomuraea corallina sp. nov. is proposed. The type strain of the type species is MCN248T (=NBRC115966T = TBRC17110T).

10.
ACS Omega ; 8(42): 39035-39040, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37901494

RESUMEN

Vancomycin is a potent and broad-spectrum antibiotic that binds to the d-Ala-d-Ala moiety of the growing bacterial cell wall and kills bacteria. This fascinating binding model prompted us to design and synthesize d-Ala-d-Ala silica gels for the establishment of a new physicochemical (PC) screening method. In this report, we confirmed that vancomycin binds to d-Ala-d-Ala silica gel and can be eluted with MeOH containing 50 mM TFA. Finally, d-Ala-d-Ala silica gel enables to purify vancomycin from the culture broth of a vancomycin-producing strain, Amycolatopsis orientalis.

11.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37762174

RESUMEN

Synovial inflammation plays a crucial role in the destruction of joints and the experience of pain in osteoarthritis (OA). Emerging evidence suggests that certain antibiotic agents and their derivatives possess anti-inflammatory properties. Medermycin (MED) has been identified as a potent antibiotic, specifically active against Gram-positive bacteria. In this study, we aimed to investigate the impact of MED on TNFα-induced inflammatory reactions in a synovial cell line, SW-982, as well as primary human synovial fibroblasts (HSF) using RNA sequencing, rtRT-PCR, ELISA, and western blotting. Through the analysis of differentially expressed genes (DEGs), we identified a total of 1478 significantly upregulated genes in SW-982 cells stimulated with TNFα compared to the vehicle control. Among these upregulated genes, MED treatment led to a reduction in 1167 genes, including those encoding proinflammatory cytokines such as IL1B, IL6, and IL8. Pathway analysis revealed the enrichment of DEGs in the TNF and NFκB signaling pathway, further supporting the involvement of MED in modulating inflammatory responses. Subsequent experiments demonstrated that MED inhibited the expression of IL6 and IL8 at both the mRNA and protein levels in both SW982 cells and HSF. Additionally, MED treatment resulted in a reduction in p65 phosphorylation in both cell types, indicating its inhibitory effect on NFκB activation. Interestingly, MED also inhibited Akt phosphorylation in SW982 cells, but not in HSF. Overall, our findings suggest that MED suppresses TNFα-mediated inflammatory cytokine production and p65 phosphorylation. These results highlight the potential therapeutic value of MED in managing inflammatory conditions in OA. Further investigations utilizing articular chondrocytes and animal models of OA may provide valuable insights into the therapeutic potential of MED for this disease.


Asunto(s)
Osteoartritis , Factor de Necrosis Tumoral alfa , Humanos , Antibacterianos , Citocinas , Fibroblastos , Inflamación/tratamiento farmacológico , Interleucina-6/genética , Interleucina-8/genética , Osteoartritis/tratamiento farmacológico , Factor de Necrosis Tumoral alfa/farmacología
12.
ACS Infect Dis ; 9(8): 1602-1609, 2023 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-37418000

RESUMEN

Luminamicin (1) isolated in 1985, is a macrodiolide compound exhibiting selective antibacterial activity against anaerobes. However, the antibacterial activity of 1 was not fully examined. In this research, re-evaluation of the antibacterial activity of 1 revealed that 1 is a narrow spectrum and potent antibiotic againstClostridioides difficile(C. difficile) and effective against fidaxomicin resistantC. difficilestrain. This prompted us to obtain luminamicin resistantC. difficilestrains for the determination of the molecular target of 1 inC. difficile. Sequence analysis of 1-resistantC. difficileindicated that the mode of action of 1 differs from that of fidaxomicin. This is because no mutation was observed in RNA polymerase and mutations were observed in a hypothetical protein and cell wall protein. Furthermore, we synthesized derivatives from 1 to study the structure-activity relationship. This research indicated that the maleic anhydride and the enol ether moieties seem to be pivotal functional groups to maintain the antibacterial activity againstC. difficileand the 14-membered lactone may contribute to taking an appropriate molecular conformation.

13.
J Antibiot (Tokyo) ; 76(10): 592-597, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37468747

RESUMEN

A new peptide, emblestatin (1), was discovered from a culture broth of Embleya scabrispora K20-0267. This strain was isolated from soil using an agar medium containing lysozyme. Based on NMR and mass spectrometric analyses, 1 consists of 2-(2-hydroxyphenyl)-2-oxazoline, ß-alanine, glutamine, Nα-methyl-Nω-hydroxyornithine and 3-amino-1-hydroxy-2-piperidone moieties. Further analysis using the advanced Marfey's method revealed that all amino acids with the stereogenic α-carbon in 1 had the L configuration. Compound 1 exhibited iron chelating activity and weak antibacterial activity against Proteus vulgaris and Staphylococcus aureus.

14.
ACS Omega ; 8(12): 11556-11563, 2023 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-37008151

RESUMEN

Tetronomycin (1), first isolated from a cultured broth of Streptomyces sp. by Juslen et al. in 1974, is a polycyclic polyether compound. However, the biological activity of 1 has not been thoroughly examined. In this study, we found that 1 exhibits more potent antibacterial activity than two well-known antibacterial drugs (vancomycin and linezolid) and is effective against several drug-resistant clinical isolates including methicillin-resistant Staphylococcus aureus and vancomycin-resistant Enterococci. Furthermore, we reassigned the 13C NMR spectra of 1 and performed a preliminary structure-activity relationship study of 1 to synthesize a chemical probe for target identification, which implied different targets based on its ionophore activity.

15.
J Antibiot (Tokyo) ; 76(6): 316-323, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36991235

RESUMEN

Limited microbial genera such as Streptomyces have served as sources of natural products (NPs), whereas most others have been less investigated. The vast accumulation of genomic data available in the NCBI database enables us to bioinformatically estimate the ability of other microbial groups to produce NPs. We analyzed 21,052 complete bacterial genome sequences using antiSMASH and compared the average numbers of biosynthetic gene clusters (BGCs) related to polyketides, non-ribosomal peptides, and/or terpenes biosynthesis at the genus level. Our bioinformatic analyses showed that Tumebacillus has 5-15 BGCs and is a promising NP producer. We searched for NPs from the culture broth of Tumebacillus permanentifrigoris JCM 14557T and found two novel compounds (tumebacin with anti-Bacillus activity and tumepyrazine) and identified two known compounds. Our results highlight the diversity of sources of NPs awaiting discovery.


Asunto(s)
Productos Biológicos , Bacterias/genética , Genómica/métodos , Biología Computacional , Familia de Multigenes
16.
Artículo en Inglés | MEDLINE | ID: mdl-36961876

RESUMEN

An actinomycete strain K14-0274T was isolated from the root of Arisaema thunbergii Blume subsp. urashima (H. Hara) H. Ohashi et J. Murata collected in Japan. The results of phylogenetic analysis based on the 16S rRNA gene sequence indicated thatK14-0274T could be distinguished from the members of all known genera, although it represented a member of the family Streptosporangiaceae. K14-0274T produced sporangium-like spherical vesicles with spores on white aerial mycelia. MK-9 (H4) and MK-9 (H6) were the major menaquinones. The whole-cell hydrolysates contained madurose, glucose, mannose, rhamnose and ribose. The cell-wall amino acids comprise l-alanine, d-alanine, d-glutamic acid and meso-diaminopimelic acid. The N-acyl type of muramic acid was acetyl. Mycolic acids were not detected. Phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylinositol and phosphatidylinositolmannoside were detected. The predominant fatty acids were iso-C16 : 0, 10-methyl-C18 : 0 and C16 : 0. The G+C content of the genomic DNA was 69.7 mol%. On the basis of morphological, phylogenetic and chemotaxonomic characteristics, strain K14-0427T represents a novel genus in the family Streptosporangiaceae, for which the name Rhizohabitans arisaemae gen. nov., sp. nov. is proposed. The type strain is K14-0247T (=NBRC 114594T =TBRC 12948T).


Asunto(s)
Actinobacteria , Actinomycetales , Ácidos Grasos/química , Fosfolípidos/química , Filogenia , ARN Ribosómico 16S/genética , ADN Bacteriano/genética , Composición de Base , Análisis de Secuencia de ADN , Técnicas de Tipificación Bacteriana , Vitamina K 2/química
17.
Artículo en Inglés | MEDLINE | ID: mdl-36951888

RESUMEN

A novel actinomycete, designated strain OK19-0408T, was isolated from soil collected on Iheya island, Okinawa prefecture, Japan. Using the polyphasic taxonomic approach, comparing 16S rRNA gene sequences, the new isolate was found to be most closely related to Amycolatopsis vancoresmycina JCM12675T (98.71 %). Phylogenetic analyses using 16S rRNA sequences indicated that strain OK19-0408T was clustered with Amycolatopsis australiensis JCM15587T. However, digital DNA-DNA hybridization analyses indicated a low relatedness, in the range of 33.9-34.7 %, between strain OK19-0408T and these closely related strains. Strain OK19-0408T contained meso-diaminopimelic acid and whole-cell sugars consisting of arabinose and galactose. The acyl type of the peptidoglycan was acetyl and mycolic acids were absent in strain OK19-0408T. The major menaquinone was MK-9(H4) and hydroxy-phosphatidylethanolamine was detected as the predominant phospholipid. The predominant cellular fatty acid was iso-C16 : 0. The DNA G+C content of the genomic DNA was 71.5 mol%. Based on the polyphasic approach, strain OK19-0408T represents a novel species of the genus Amycolatopsis, for which the name Amycolatopsis iheyensis sp. nov. is proposed. The type strain of the type species is OK19-0408T (=NBRC115671T=TBRC16040T).


Asunto(s)
Actinomycetales , Ácidos Grasos , Ácidos Grasos/química , Amycolatopsis , Filogenia , ARN Ribosómico 16S/genética , Japón , Suelo , ADN Bacteriano/genética , Composición de Base , Técnicas de Tipificación Bacteriana , Análisis de Secuencia de ADN , Microbiología del Suelo
18.
J Am Chem Soc ; 144(50): 23148-23157, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36487183

RESUMEN

This article describes the first total synthesis of luminamicin using a strategy combining chemical degradation with synthesis. Chemical degradation studies provided a sense of the inherent reactivity of the natural product, and deconstruction of the molecule gave rise to a key intermediate, which became the target for chemical synthesis. The core structure of the southern part of luminamicin was constructed by a 1,6-oxa-Michael reaction to form an oxa-bridged ring, followed by coupling with a functionalized organolithium species. Modified Shiina macrolactonization conditions forged the strained 10-membered lactone containing a tri-substituted olefin. Diastereoselective α-oxidation of the 10-membered lactone completed the center part to provide the key intermediate. Inspired by the degradation study, an unprecedented enol ether/maleic anhydride moiety was constructed with a one-pot chlorosulfide coupling and thiol ß-elimination sequence. Finally, macrolactonization to the 14-membered ring in the presence of the highly electrophilic maleic anhydride moiety was accomplished using modified Mukaiyama reagents to complete the synthesis of luminamicin.


Asunto(s)
Antibacterianos , Anhídridos Maleicos , Lactonas/química , Alquenos/química , Estereoisomerismo
19.
J Nat Prod ; 85(11): 2641-2649, 2022 11 25.
Artículo en Inglés | MEDLINE | ID: mdl-36282784

RESUMEN

Two new antiplasmodial peptides, named koshidacins A (1) and B (2), were discovered from the culture broth of the Okinawan fungus Pochonia boninensis FKR-0564. Their structures, including absolute configurations, were elucidated by a combination of spectroscopic methods and chemical derivatization. Both compounds showed moderate in vitro antiplasmodial activity against Plasmodium falciparum strains, with IC50 values ranging from 17.1 to 0.83 µM. In addition, compound 2 suppressed 41% of malaria parasites in vivo when administered intraperitoneally at a dose of 30 mg/kg/day for 4 days.


Asunto(s)
Antimaláricos , Hypocreales , Péptidos Cíclicos , Plasmodium falciparum , Antimaláricos/química , Antimaláricos/aislamiento & purificación , Antimaláricos/farmacología , Hypocreales/química , Plasmodium falciparum/efectos de los fármacos , Péptidos Cíclicos/química , Péptidos Cíclicos/aislamiento & purificación , Péptidos Cíclicos/farmacología
20.
J Antibiot (Tokyo) ; 75(10): 559-566, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35986092

RESUMEN

The blaNDM-1 gene encodes a carbapenemase, New Delhi metallo-ß-lactamase (NDM-1), and the ability to produce NDM-1 is spread among Enterobacteriaceae via horizontal gene transfer of plasmids. It has been widely accepted that blaNDM-1 is regulated by a hybrid promoter (PISAba125) consisting of a -10 box from the original blaNDM-1 and a -35 box from ISAba125. However, the conservation of this promoter and the vertical transmission of blaNDM genes by chromosomal integration have not been comprehensively analyzed. We retrieved the region containing the ORF of blaNDM-1 (>95% translated protein identity) and a region 120 bp upstream of the blaNDM-1 start codon from the complete sequence data of Enterobacteriaceae plasmids (n = 10,914) and chromosomes (n = 4908) deposited in GenBank, and the 310 extracted blaNDM genes were analyzed by an in-silico approach. The results showed that most blaNDM genes (99.0%) utilized the promoter, PISAba125. Interestingly, two blaNDM-1 genes from the genus Citrobacter utilized the ISCR1-derived outward-oriented promoters POUT (PISCR1). Furthermore, the insertion of ISAba125 and ISCR1 occurred upstream of the CCATATTT sequence, which is located upstream of the -10 box. We also confirmed that most of the blaNDM genes were disseminated by horizontal gene transfer of the plasmid, but 10 cases of the blaNDM genes were integrated into the chromosome via mobile genetic elements such as IS26, IS150, ISCR1, ICE, and Tn7-like elements. Thus, plasmid-mediated transmission of the PISAba125-blaNDM genes is predominant in Enterobacteriaceae. However, the spread of blaNDM genes with new promoters and vertical dissemination via chromosomal integrations may pose additional serious clinical problems.


Asunto(s)
Enterobacteriaceae , beta-Lactamasas , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Enterobacteriaceae/genética , Transferencia de Gen Horizontal , Pruebas de Sensibilidad Microbiana , Plásmidos/genética , beta-Lactamasas/genética , beta-Lactamasas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA