Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Cell Biol ; 222(1)2023 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-36383135

RESUMEN

Astrocytes, often considered as secondary responders to neurodegeneration, are emerging as primary drivers of brain disease. Here we show that mitochondrial DNA depletion in astrocytes affects their primary cilium, the signaling organelle of a cell. The progressive oxidative phosphorylation deficiency in astrocytes induces FOXJ1 and RFX transcription factors, known as master regulators of motile ciliogenesis. Consequently, a robust gene expression program involving motile cilia components and multiciliated cell differentiation factors are induced. While the affected astrocytes still retain a single cilium, these organelles elongate and become remarkably distorted. The data suggest that chronic activation of the mitochondrial integrated stress response (ISRmt) in astrocytes drives anabolic metabolism and promotes ciliary elongation. Collectively, our evidence indicates that an active signaling axis involving mitochondria and primary cilia exists and that ciliary signaling is part of ISRmt in astrocytes. We propose that metabolic ciliopathy is a novel pathomechanism for mitochondria-related neurodegenerative diseases.


Asunto(s)
Astrocitos , Cilios , Mitocondrias , Astrocitos/metabolismo , Cilios/metabolismo , Cilios/patología , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Homeostasis , Mitocondrias/metabolismo , Mitocondrias/patología , Ratones , Animales , Factores de Transcripción del Factor Regulador X/genética , Factores de Transcripción del Factor Regulador X/metabolismo , ADN Mitocondrial
2.
Development ; 148(4)2021 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-33531432

RESUMEN

KIF2A is a kinesin motor protein with essential roles in neural progenitor division and axonal pruning during brain development. However, how different KIF2A alternative isoforms function during development of the cerebral cortex is not known. Here, we focus on three Kif2a isoforms expressed in the developing cortex. We show that Kif2a is essential for dendritic arborization in mice and that the functions of all three isoforms are sufficient for this process. Interestingly, only two of the isoforms can sustain radial migration of cortical neurons; a third isoform, lacking a key N-terminal region, is ineffective. By proximity-based interactome mapping for individual isoforms, we identify previously known KIF2A interactors, proteins localized to the mitotic spindle poles and, unexpectedly, also translation factors, ribonucleoproteins and proteins that are targeted to organelles, prominently to the mitochondria. In addition, we show that a KIF2A mutation, which causes brain malformations in humans, has extensive changes to its proximity-based interactome, with depletion of mitochondrial proteins identified in the wild-type KIF2A interactome. Our data raises new insights about the importance of alternative splice variants during brain development.


Asunto(s)
Diferenciación Celular/genética , Movimiento Celular/genética , Regulación de la Expresión Génica , Cinesinas/genética , Neuronas/citología , Neuronas/metabolismo , Proteínas Represoras/genética , Empalme Alternativo , Animales , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Perfilación de la Expresión Génica , Cinesinas/metabolismo , Ratones , Mutación , Neurogénesis/genética , Proteómica/métodos , Isoformas de ARN , Proteínas Represoras/metabolismo
3.
Life Sci Alliance ; 3(9)2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32737078

RESUMEN

Mitochondrial DNA (mtDNA) depletion syndrome (MDS) is a group of severe, tissue-specific diseases of childhood with unknown pathogenesis. Brain-specific MDS manifests as devastating spongiotic encephalopathy with no curative therapy. Here, we report cell type-specific stress responses and effects of rapamycin treatment and ketogenic diet (KD) in mice with spongiotic encephalopathy mimicking human MDS, as these interventions were reported to improve some mitochondrial disease signs or symptoms. These mice with astrocyte-specific knockout of Twnk gene encoding replicative mtDNA helicase Twinkle (TwKOastro) show wide-spread cell-autonomous astrocyte activation and mitochondrial integrated stress response (ISRmt) induction with major metabolic remodeling of the brain. Mice with neuronal-specific TwKO show no ISRmt Both KD and rapamycin lead to rapid deterioration and weight loss of TwKOastro and premature trial termination. Although rapamycin had no robust effects on TwKOastro brain pathology, KD exacerbated spongiosis, gliosis, and ISRmt Our evidence emphasizes that mitochondrial disease treatments and stress responses are tissue- and disease specific. Furthermore, rapamycin and KD are deleterious in MDS-linked spongiotic encephalopathy, pointing to a crucial role of diet and metabolism for mitochondrial disease progression.


Asunto(s)
Encefalopatías/fisiopatología , Enfermedades Mitocondriales/fisiopatología , Estrés Fisiológico/fisiología , Animales , Astrocitos/metabolismo , Encefalopatías/metabolismo , ADN Helicasas/genética , Replicación del ADN/genética , ADN Mitocondrial/genética , Dieta Cetogénica/métodos , Modelos Animales de Enfermedad , Femenino , Cetosis/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Mutación , Neuronas/metabolismo , Sirolimus/farmacología
4.
J Clin Invest ; 130(1): 20-28, 2020 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-31895050

RESUMEN

High-throughput technologies for genomics, transcriptomics, proteomics, and metabolomics, and integrative analysis of these data, enable new, systems-level insights into disease pathogenesis. Mitochondrial diseases are an excellent target for hypothesis-generating omics approaches, as the disease group is mechanistically exceptionally complex. Although the genetic background in mitochondrial diseases is in either the nuclear or the mitochondrial genome, the typical downstream effect is dysfunction of the mitochondrial respiratory chain. However, the clinical manifestations show unprecedented variability, including either systemic or tissue-specific effects across multiple organ systems, with mild to severe symptoms, and occurring at any age. So far, the omics approaches have provided mechanistic understanding of tissue-specificity and potential treatment options for mitochondrial diseases, such as metabolome remodeling. However, no curative treatments exist, suggesting that novel approaches are needed. In this Review, we discuss omics approaches and discoveries with the potential to elucidate mechanisms of and therapies for mitochondrial diseases.


Asunto(s)
Metabolómica , Enfermedades Mitocondriales/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Enfermedades Mitocondriales/metabolismo , Especificidad de Órganos , Sitios de Carácter Cuantitativo
5.
Sci Rep ; 9(1): 19697, 2019 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-31873146

RESUMEN

Excitatory neurons of the mammalian cerebral cortex are organized into six functional layers characterized by unique patterns of connectivity, as well as distinctive physiological and morphological properties. Cortical layers appear after a highly regulated migration process in which cells move from the deeper, proliferative zone toward the superficial layers. Importantly, defects in this radial migration process have been implicated in neurodevelopmental and psychiatric diseases. Here we report that during the final stages of migration, transcription factor Neurogenic Differentiation 2 (Neurod2) contributes to terminal cellular localization within the cortical plate. In mice, in utero knockdown of Neurod2 resulted in reduced numbers of neurons localized to the uppermost region of the developing cortex, also termed the primitive cortical zone. Our ChIP-Seq and RNA-Seq analyses of genes regulated by NEUROD2 in the developing cortex identified a number of key target genes with known roles in Reelin signaling, a critical regulator of neuronal migration. Our focused analysis of regulation of the Reln gene, encoding the extracellular ligand REELIN, uncovered NEUROD2 binding to conserved E-box elements in multiple introns. Furthermore, we demonstrate that knockdown of NEUROD2 in primary cortical neurons resulted in a strong increase in Reln gene expression at the mRNA level, as well as a slight upregulation at the protein level. These data reveal a new role for NEUROD2 during the late stages of neuronal migration, and our analysis of its genomic targets offers new genes with potential roles in cortical lamination.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Moléculas de Adhesión Celular Neuronal/genética , Corteza Cerebral/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas del Tejido Nervioso/genética , Neuropéptidos/metabolismo , Serina Endopeptidasas/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Sitios de Unión/genética , Diferenciación Celular , Movimiento Celular , Células Cultivadas , Corteza Cerebral/citología , Corteza Cerebral/crecimiento & desarrollo , Dendritas/metabolismo , Femenino , Regulación del Desarrollo de la Expresión Génica , Técnicas de Silenciamiento del Gen , Ratones , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/deficiencia , Neuropéptidos/genética , Embarazo , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN Interferente Pequeño/genética , RNA-Seq , Proteína Reelina
6.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28303257

RESUMEN

Calcium signaling controls many key processes in neurons, including gene expression, axon guidance, and synaptic plasticity. In contrast to calcium influx through voltage- or neurotransmitter-gated channels, regulatory pathways that control store-operated calcium entry (SOCE) in neurons are poorly understood. Here, we report a transcriptional control of Stim1 (stromal interaction molecule 1) gene, which is a major sensor of endoplasmic reticulum (ER) calcium levels and a regulator of SOCE. By using a genome-wide chromatin immunoprecipitation and sequencing approach in mice, we find that NEUROD2, a neurogenic transcription factor, binds to an intronic element within the Stim1 gene. We show that NEUROD2 limits Stim1 expression in cortical neurons and consequently fine-tunes the SOCE response upon depletion of ER calcium. Our findings reveal a novel mechanism that regulates neuronal calcium homeostasis during cortical development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Neuronas/metabolismo , Neuropéptidos/metabolismo , Molécula de Interacción Estromal 1/metabolismo , Animales , Animales Recién Nacidos , Proteínas de Ciclo Celular , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Secuencia Conservada , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Intrones , Ratones Endogámicos BALB C , Proteínas Nucleares , Unión Proteica , Factores de Transcripción
7.
BMC Genomics ; 16: 681, 2015 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-26341353

RESUMEN

BACKGROUND: Cellular differentiation programs are controlled, to a large extent, by the combinatorial functioning of specific transcription factors. Cortical projection neurons constitute the major excitatory neuron population within the cortex and mediate long distance communication between the cortex and other brain regions. Our understanding of effector transcription factors and their downstream transcriptional programs that direct the differentiation process of cortical projection neurons is far from complete. RESULTS: In this study, we carried out a ChIP-Seq (chromatin-immunoprecipitation and sequencing) analysis of NEUROD2, an effector transcription factor expressed in lineages of cortical projection neurons during the peak of cortical excitatory neurogenesis. Our results suggest that during cortical development NEUROD2 targets key genes that are required for Reelin signaling, a major pathway that regulates the migration of neurons from germinal zones to their final layers of residence within the cortex. We also find that NEUROD2 binds to a large set of genes with functions in layer-specific differentiation and in axonal pathfinding of cortical projection neurons. CONCLUSIONS: Our analysis of in vivo NEUROD2 target genes offers mechanistic insight into signaling pathways that regulate neuronal migration and axon guidance and identifies genes that are likely to be required for proper cortical development.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Diferenciación Celular/genética , Movimiento Celular/genética , Corteza Cerebral/citología , Corteza Cerebral/metabolismo , Estudio de Asociación del Genoma Completo , Neuronas/citología , Neuronas/metabolismo , Neuropéptidos/genética , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sitios de Unión , Linaje de la Célula/genética , Corteza Cerebral/embriología , Inmunoprecipitación de Cromatina , Expresión Génica , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Modelos Biológicos , Neuropéptidos/metabolismo , Unión Proteica , Proteína Reelina
8.
Neuron ; 75(6): 1067-80, 2012 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-22998874

RESUMEN

The paraneoplastic neurologic disorders target several families of neuron-specific RNA binding proteins (RNABPs), revealing that there are unique aspects of gene expression regulation in the mammalian brain. Here, we used HITS-CLIP to determine robust binding sites targeted by the neuronal Elav-like (nElavl) RNABPs. Surprisingly, nElav protein binds preferentially to GU-rich sequences in vivo and in vitro, with secondary binding to AU-rich sequences. nElavl null mice were used to validate the consequence of these binding events in the brain, demonstrating that they bind intronic sequences in a position dependent manner to regulate alternative splicing and to 3'UTR sequences to regulate mRNA levels. These controls converge on the glutamate synthesis pathway in neurons; nElavl proteins are required to maintain neurotransmitter glutamate levels, and the lack of nElavl leads to spontaneous epileptic seizure activity. The genome-wide analysis of nElavl targets reveals that one function of neuron-specific RNABPs is to control excitation-inhibition balance in the brain.


Asunto(s)
Encéfalo/citología , Proteínas ELAV/metabolismo , Regulación de la Expresión Génica/fisiología , Ácido Glutámico/metabolismo , Neuronas/fisiología , Empalme del ARN/genética , Regiones no Traducidas 3'/fisiología , Animales , Animales Recién Nacidos , Encéfalo/metabolismo , Biología Computacional , Modelos Animales de Enfermedad , Proteínas ELAV/deficiencia , Electroencefalografía , Epilepsia/genética , Epilepsia/fisiopatología , Regulación de la Expresión Génica/genética , Glutaminasa/genética , Glutaminasa/metabolismo , Ratones , Ratones Noqueados , Análisis por Micromatrices , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo
9.
Nat Rev Neurosci ; 8(5): 331-40, 2007 May.
Artículo en Inglés | MEDLINE | ID: mdl-17453014

RESUMEN

The establishment of functional neural connections requires the growth of axons to specific target areas and the formation of synapses with appropriate synaptic partners. Several molecules that regulate axon guidance and synapse formation have been identified in the past decade, but it is unclear how a relatively limited number of factors can specify a large number of connections. Recent evidence indicates that transcription factors make a crucial contribution to the specification of connections in the nervous system by coordinating the response of neurons to guidance molecules and neurotransmitters.


Asunto(s)
Axones/fisiología , Neuronas/citología , Sinapsis/fisiología , Factores de Transcripción/fisiología , Animales , Modelos Biológicos , Organogénesis , Transcripción Genética , Activación Transcripcional/fisiología , Vertebrados
10.
Neuron ; 49(5): 683-95, 2006 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-16504944

RESUMEN

During cortical development, both activity-dependent and genetically determined mechanisms are required to establish proper neuronal connectivity. While activity-dependent transcription may link the two processes, specific transcription factors that mediate such a process have not been identified. We identified the basic helix-loop-helix (bHLH) transcription factor Neurogenic Differentiation 2 (NeuroD2) in a screen for calcium-regulated transcription factors and report that it is required for the proper development of thalamocortical connections. In neuroD2 null mice, thalamocortical axon terminals fail to segregate in the somatosensory cortex, and the postsynaptic barrel organization is disrupted. Additionally, synaptic transmission is defective at thalamocortical synapses in neuroD2 null mice. Total excitatory synaptic currents are reduced in layer IV in the knockouts, and the relative contribution of AMPA and NMDA receptor-mediated currents to evoked responses is decreased. These observations indicate that NeuroD2 plays a critical role in regulating synaptic maturation and the patterning of thalamocortical connections.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/fisiología , Vías Nerviosas/crecimiento & desarrollo , Neuropéptidos/fisiología , Corteza Somatosensorial/crecimiento & desarrollo , Sinapsis/fisiología , Tálamo/crecimiento & desarrollo , 2-Amino-5-fosfonovalerato/farmacología , Secuencia de Aminoácidos , Aminoácidos/metabolismo , Animales , Animales Recién Nacidos , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/deficiencia , Western Blotting/métodos , Proteína de Unión a CREB/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Células Cultivadas , Quelantes/farmacología , Cloranfenicol O-Acetiltransferasa/metabolismo , Interacciones Farmacológicas , Ácido Egtácico/farmacología , Estimulación Eléctrica/métodos , Embrión de Mamíferos , Antagonistas de Aminoácidos Excitadores/farmacología , Antagonistas del GABA/farmacología , Expresión Génica/efectos de los fármacos , Inmunohistoquímica/métodos , Técnicas In Vitro , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Ratones , Ratones Noqueados , Modelos Biológicos , Factores de Crecimiento Nervioso/metabolismo , Neuronas/efectos de los fármacos , Neuropéptidos/deficiencia , Nimodipina/farmacología , Técnicas de Placa-Clamp/métodos , Fosfopiruvato Hidratasa/metabolismo , Cloruro de Potasio/farmacología , Piridazinas/farmacología , Compuestos de Piridinio/metabolismo , Quinoxalinas/farmacología , Receptores AMPA/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , Corteza Somatosensorial/citología , Activación Transcripcional/genética , Transfección/métodos , Vibrisas/crecimiento & desarrollo , Vibrisas/inervación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA