Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Physiol Rev ; 2024 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-38990068

RESUMEN

Lipids represent the most abundant molecular type in the brain with a fat content of approximately 60% of the dry brain weight in humans. Despite this fact, little attention has been paid to circumscribe the dynamic role of lipids in brain function and disease. Membrane lipids such as cholesterol, phosphoinositide, sphingolipids, arachidonic acid and endocannabinoids finely regulate both synaptic receptors and ion channels that insure critical neural functions. After a brief introduction on brain lipids and their respective properties, we review here their role in regulating synaptic function and ion channel activity, action potential propagation, neuronal development, functional plasticity and their contribution in the development of neurological and neuropsychiatric diseases. We also provide possible directions for future research on lipid function in brain plasticity and diseases.

2.
bioRxiv ; 2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37720016

RESUMEN

Neurodevelopmental disorders are frequently linked to mutations in synaptic organizing molecules. MAM domain containing glycosylphosphatidylinositol anchor 1 and 2 (MDGA1 and MDGA2) are a family of synaptic organizers suggested to play an unusual role as synaptic repressors, but studies offer conflicting evidence for their localization. Using epitope-tagged MDGA1 and MDGA2 knock-in mice, we found that native MDGAs are expressed throughout the brain, peaking early in postnatal development. Surprisingly, endogenous MDGA1 was enriched at excitatory, but not inhibitory, synapses. Both shRNA knockdown and CRISPR/Cas9 knockout of MDGA1 resulted in cell-autonomous, specific impairment of AMPA receptor-mediated synaptic transmission, without affecting GABAergic transmission. Conversely, MDGA2 knockdown/knockout selectively depressed NMDA receptor-mediated transmission but enhanced inhibitory transmission. Our results establish that MDGA2 acts as a synaptic repressor, but only at inhibitory synapses, whereas both MDGAs are required for excitatory transmission. This nonoverlapping division of labor between two highly conserved synaptic proteins is unprecedented.

3.
Proc Natl Acad Sci U S A ; 119(44): e2205264119, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36282913

RESUMEN

Brain oscillations have long-lasting effects on synaptic and cellular properties. For instance, synaptic stimulation at theta (θ) frequency induces persistent depression of both excitatory synaptic transmission and intrinsic excitability in CA1 principal neurons. However, the incidence of θ activity on synaptic transmission and intrinsic excitability in hippocampal GABAergic interneurons is unclear. We report here the induction of both synaptic and intrinsic potentiation in oriens-lacunosum moleculare (O-LM) interneurons following stimulation of afferent glutamatergic inputs in the θ frequency range (∼5 Hz). Long-term synaptic potentiation (LTP) is induced by synaptic activation of calcium-permeable AMPA receptors (CP-AMPAR), whereas long-term potentiation of intrinsic excitability (LTP-IE) results from the mGluR1-dependent down-regulation of Kv7 voltage-dependent potassium channel and hyperpolarization activated and cyclic nucleotide-gated (HCN) channel through the depletion of phosphatidylinositol-4,5-biphosphate (PIP2). LTP and LTP-IE are reversible, demonstrating that both synaptic and intrinsic changes are bidirectional in O-LM cells. We conclude that synaptic activity at θ frequency induces both synaptic and intrinsic potentiation in O-LM interneurons, i.e., the opposite of what is typically seen in glutamatergic neurons.


Asunto(s)
Calcio , Receptores AMPA , Receptores AMPA/metabolismo , Calcio/metabolismo , Sinapsis/metabolismo , Fosfatidilinositol 4,5-Difosfato , Hipocampo/metabolismo , Interneuronas/metabolismo , Potenciación a Largo Plazo/fisiología , Canales de Potasio , Nucleótidos Cíclicos/farmacología , Estimulación Eléctrica
4.
J Neurosci ; 41(46): 9521-9538, 2021 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-34620719

RESUMEN

KCNQ-Kv7 channels are found at the axon initial segment of pyramidal neurons, where they control cell firing and membrane potential. In oriens lacunosum moleculare (O-LM) interneurons, these channels are mainly expressed in the dendrites, suggesting a peculiar function of Kv7 channels in these neurons. Here, we show that Kv7 channel activity is upregulated following induction of presynaptic long-term synaptic depression (LTD) in O-LM interneurons from rats of both sex, thus resulting in a synergistic long-term depression of intrinsic excitability (LTD-IE). Both LTD and LTD-IE involve endocannabinoid (eCB) biosynthesis for induction. However, although LTD is dependent on cannabinoid type 1 receptors, LTD-IE is not. Molecular modeling shows a strong interaction of eCBs with Kv7.2/3 channel, suggesting a persistent action of these lipids on Kv7 channel activity. Our data thus unveil a major role for eCB synthesis in triggering both synaptic and intrinsic depression in O-LM interneurons.SIGNIFICANCE STATEMENT In principal cells, Kv7 channels are essentially located at the axon initial segment. In contrast, in O-LM interneurons, Kv7 channels are highly expressed in the dendrites, suggesting a singular role of these channels in O-LM cell function. Here, we show that LTD of excitatory inputs in O-LM interneurons is associated with an upregulation of Kv7 channels, thus resulting in a synergistic LTD of LTD-IE. Both forms of plasticity are mediated by the biosynthesis of eCBs. Stimulation of CB1 receptors induces LTD, whereas the direct interaction of eCBs with Kv7 channels induces LTD-IE. Our results thus provide a previously unexpected involvement of eCBs in long-lasting plasticity of intrinsic excitability in GABAergic interneurons.


Asunto(s)
Endocannabinoides/metabolismo , Interneuronas/metabolismo , Canales de Potasio KCNQ/metabolismo , Depresión Sináptica a Largo Plazo/fisiología , Animales , Femenino , Hipocampo/metabolismo , Masculino , Técnicas de Cultivo de Órganos , Ratas , Ratas Wistar
5.
Elife ; 92020 08 24.
Artículo en Inglés | MEDLINE | ID: mdl-32831170

RESUMEN

We tested the proposal that the C-terminal domain (CTD) of the AMPAR subunit GluA1 is required for LTP. We found that a knock-in mouse lacking the CTD of GluA1 expresses normal LTP and spatial memory, assayed by the Morris water maze. Our results support a model in which LTP generates synaptic slots, which capture passively diffusing AMPARs.


Asunto(s)
Potenciación a Largo Plazo , Receptores AMPA , Animales , Línea Celular , Femenino , Técnicas de Sustitución del Gen , Hipocampo/metabolismo , Humanos , Potenciación a Largo Plazo/genética , Potenciación a Largo Plazo/fisiología , Masculino , Aprendizaje por Laberinto/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Dominios Proteicos/genética , Receptores AMPA/química , Receptores AMPA/genética , Receptores AMPA/metabolismo , Memoria Espacial/fisiología
6.
Cell Tissue Res ; 379(3): 421-428, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31776822

RESUMEN

Regenerative medicine is a branch of translational research that aims to reestablish irreparably damaged tissues and organs by stimulating the body's own repair mechanisms via the implantation of stem cells differentiated into specialized cell types. A rich source of adult stem cells is located inside the tooth and is represented by human dental pulp stem cells, or hDPSCs. These cells are characterized by a high proliferative rate, have self-renewal and multi-lineage differentiation properties and are often used for tissue engineering and regenerative medicine. The present review will provide an overview of hDPSCs and related features with a special focus on their potential applications in regenerative medicine of the nervous system, such as, for example, after spinal cord injury. Recent advances in the identification and characterization of dental stem cells and in dental tissue engineering strategies suggest that bioengineering approaches may successfully be used to regenerate districts of the central nervous system, previously considered irreparable.


Asunto(s)
Tratamiento Basado en Trasplante de Células y Tejidos/métodos , Pulpa Dental/citología , Células Madre Mesenquimatosas/fisiología , Regeneración Nerviosa/fisiología , Traumatismos de la Médula Espinal/terapia , Animales , Pulpa Dental/metabolismo , Humanos , Células Madre Mesenquimatosas/citología , Células Madre Mesenquimatosas/metabolismo
7.
Proc Natl Acad Sci U S A ; 116(16): 8028-8037, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30936304

RESUMEN

Striatal-enriched protein tyrosine phosphatase (STEP) is a brain-specific protein phosphatase that regulates a variety of synaptic proteins, including NMDA receptors (NAMDRs). To better understand STEP's effect on other receptors, we used mass spectrometry to identify the STEP61 interactome. We identified a number of known interactors, but also ones including the GluA2 subunit of AMPA receptors (AMPARs). We show that STEP61 binds to the C termini of GluA2 and GluA3 as well as endogenous AMPARs in hippocampus. The synaptic expression of GluA2 and GluA3 is increased in STEP-KO mouse brain, and STEP knockdown in hippocampal slices increases AMPAR-mediated synaptic currents. Interestingly, STEP61 overexpression reduces the synaptic expression and synaptic currents of both AMPARs and NMDARs. Furthermore, STEP61 regulation of synaptic AMPARs is mediated by lysosomal degradation. Thus, we report a comprehensive list of STEP61 binding partners, including AMPARs, and reveal a central role for STEP61 in differentially organizing synaptic AMPARs and NMDARs.


Asunto(s)
Proteínas Tirosina Fosfatasas/metabolismo , Receptores AMPA/metabolismo , Animales , Cromatografía Liquida , Lisosomas/química , Lisosomas/metabolismo , Ratones , Fosforilación , Unión Proteica , Proteínas Tirosina Fosfatasas/química , Receptores AMPA/química , Sinapsis , Espectrometría de Masas en Tándem
8.
Nat Commun ; 9(1): 5205, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510185

RESUMEN

The originally published version of this Article contained errors in Figure 5, for which we apologise. In panel c, the scatter graph was inadvertently replaced with a scatter graph comprising a subset of data points from panel d. Furthermore, the legends to Figures 5c and 5d were inverted. These errors have now been corrected in both the PDF and HTML versions of the Article, and the incorrect version of Fig. 5c is presented in the Author Correction associated with this Article.

9.
Nat Commun ; 9(1): 2069, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29802289

RESUMEN

CaMKII is one of the most studied synaptic proteins, but many critical issues regarding its role in synaptic function remain unresolved. Using a CRISPR-based system to delete CaMKII and replace it with mutated forms in single neurons, we have rigorously addressed its various synaptic roles. In brief, basal AMPAR and NMDAR synaptic transmission both require CaMKIIα, but not CaMKIIß, indicating that, even in the adult, synaptic transmission is determined by the ongoing action of CaMKIIα. While AMPAR transmission requires kinase activity, NMDAR transmission does not, implying a scaffolding role for the CaMKII protein instead. LTP is abolished in the absence of CaMKIIα and/or CaMKIIß and with an autophosphorylation impaired CaMKIIα (T286A). With the exception of NMDAR synaptic currents, all aspects of CaMKIIα signaling examined require binding to the NMDAR, emphasizing the essential role of this receptor as a master synaptic signaling hub.


Asunto(s)
Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Transmisión Sináptica/fisiología , Animales , Sistemas CRISPR-Cas , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Membrana Celular/metabolismo , Femenino , Células HEK293 , Hipocampo/citología , Humanos , Potenciación a Largo Plazo/fisiología , Ratones , Ratones Noqueados , Neuronas/citología , Neuronas/fisiología , Fosforilación , Ratas , Receptores de Glutamato/metabolismo , Transducción de Señal/fisiología , Sinapsis/fisiología
10.
Proc Natl Acad Sci U S A ; 113(32): E4736-44, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457929

RESUMEN

Phosphorylation regulates surface and synaptic expression of NMDA receptors (NMDARs). Both the tyrosine kinase Fyn and the tyrosine phosphatase striatal-enriched protein tyrosine phosphatase (STEP) are known to target the NMDA receptor subunit GluN2B on tyrosine 1472, which is a critical residue that mediates NMDAR endocytosis. STEP reduces the surface expression of NMDARs by promoting dephosphorylation of GluN2B Y1472, whereas the synaptic scaffolding protein postsynaptic density protein 95 (PSD-95) stabilizes the surface expression of NMDARs. However, nothing is known about a potential functional interaction between STEP and PSD-95. We now report that STEP61 binds to PSD-95 but not to other PSD-95 family members. We find that PSD-95 expression destabilizes STEP61 via ubiquitination and degradation by the proteasome. Using subcellular fractionation, we detect low amounts of STEP61 in the PSD fraction. However, STEP61 expression in the PSD is increased upon knockdown of PSD-95 or in vivo as detected in PSD-95-KO mice, demonstrating that PSD-95 excludes STEP61 from the PSD. Importantly, only extrasynaptic NMDAR expression and currents were increased upon STEP knockdown, as is consistent with low STEP61 localization in the PSD. Our findings support a dual role for PSD-95 in stabilizing synaptic NMDARs by binding directly to GluN2B but also by promoting synaptic exclusion and degradation of the negative regulator STEP61.


Asunto(s)
Homólogo 4 de la Proteína Discs Large/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/metabolismo , Receptores de N-Metil-D-Aspartato/fisiología , Animales , Femenino , Células HEK293 , Humanos , Ratones , Complejo de la Endopetidasa Proteasomal/fisiología , Proteínas Tirosina Fosfatasas no Receptoras/análisis , Ratas , Ratas Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Ubiquitinación
11.
Neuron ; 83(5): 1051-7, 2014 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-25155957

RESUMEN

One of the most powerful ways to test the function of a protein is to characterize the consequences of its deletion. In the past, this has involved inactivation of the gene by homologous recombination either in the germline or later through conditional deletion. RNA interference (RNAi) provides an alternative way to knock down proteins, but both of these approaches have their limitations. Recently, the CRISPR/Cas9 system has suggested another way to selectively inactivate genes. We have now tested this system in postmitotic neurons by targeting two well-characterized synaptic proteins, the obligatory GluN1 subunit of the NMDA receptor and the GluA2 subunit of the AMPA receptor. Expression of CRISPR/Cas9 in hippocampal slice cultures completely eliminated NMDA receptor and GluA2 function. CRISPR/Cas9 thus provides a powerful tool to study the function of synaptic proteins.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Animales , Animales Recién Nacidos , Células Cultivadas , Fármacos actuantes sobre Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Hipocampo/citología , Humanos , Técnicas In Vitro , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , N-Metilaspartato/farmacología , Proteínas del Tejido Nervioso/genética , Quinoxalinas/farmacología , ARN/genética , ARN/metabolismo , Ratas , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Sinapsis/genética , Sinaptofisina/metabolismo , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/farmacología , Proteína Fluorescente Roja
12.
Biochim Biophys Acta ; 1833(8): 1820-31, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23545413

RESUMEN

Trafficking of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPARs) is regulated by specific interactions with other proteins and by post-translational mechanisms, such as phosphorylation. We have found that the type II cGMP-dependent protein kinase (cGKII) phosphorylates GluA1 (formerly GluR1) at S845, augmenting the surface expression of AMPARs at both synaptic and extrasynaptic sites. Activation of cGKII by 8-Br-cGMP enhances the surface expression of GluA1, whereas its inhibition or suppression effectively diminished the expression of this protein at the cell surface. In granule cells, NMDA receptor activation (NMDAR) stimulates nitric oxide and cGMP production, which in turn activates cGKII and induces the phosphorylation of GluA1, promoting its accumulation in the plasma membrane. GluA1 is mainly incorporated into calcium permeable AMPARs as exposure to 8-Br-cGMP or NMDA activation enhanced AMPA-elicited calcium responses that are sensitive to NASPM inhibition. We summarize evidence for an increase of calcium permeable AMPA receptors downstream of NMDA receptor activation that might be relevant for granule cell development and plasticity.


Asunto(s)
Cerebelo/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/metabolismo , Neuronas/metabolismo , Receptores AMPA/metabolismo , Animales , Calcio/metabolismo , Membrana Celular/enzimología , Membrana Celular/metabolismo , Células Cultivadas , Cerebelo/enzimología , GMP Cíclico/genética , GMP Cíclico/metabolismo , Proteína Quinasa Dependiente de GMP Cíclico Tipo II/genética , Femenino , Neuronas/enzimología , Fosforilación/genética , Ratas , Ratas Wistar , Receptores AMPA/genética , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
13.
J Neurosci ; 33(14): 6123-32, 2013 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-23554493

RESUMEN

The mechanisms by which natural rewards such as sugar affect synaptic transmission and behavior are largely unexplored. Here, we investigate regulation of nucleus accumbens synapses by sucrose intake. Previous studies have shown that AMPA receptor (AMPAR) trafficking is a major mechanism for regulating synaptic strength, and that in vitro, trafficking of AMPARs containing the GluA1 subunit takes place by a two-step mechanism involving extrasynaptic and then synaptic receptor transport. We report that in rat, repeated daily ingestion of a 25% sucrose solution transiently elevated spontaneous locomotion and potentiated accumbens core synapses through incorporation of Ca(2+)-permeable AMPA receptors (CPARs), which are GluA1-containing, GluA2-lacking AMPARs. Electrophysiological, biochemical, and quantitative electron microscopy studies revealed that sucrose training (7 d) induced a stable (>24 h) intraspinous GluA1 population, and that in these rats a single sucrose stimulus rapidly (5 min) but transiently (<24 h) elevated GluA1 at extrasynaptic sites. CPARs and dopamine D1 receptors were required in vivo for elevated locomotion after sucrose ingestion. Significantly, a 7 d protocol of daily ingestion of a 3% solution of saccharin, a noncaloric sweetener, induced synaptic GluA1 similarly to 25% sucrose ingestion. These findings identify multistep GluA1 trafficking, previously described in vitro, as a mechanism for acute regulation of synaptic transmission in vivo by a natural orosensory reward. Trafficking is stimulated by a chemosensory pathway that is not dependent on the caloric value of sucrose.


Asunto(s)
Neuronas/metabolismo , Receptores AMPA/metabolismo , Sacarosa/administración & dosificación , Edulcorantes/administración & dosificación , Animales , Proteínas Portadoras , Condicionamiento Operante/fisiología , Dopamina beta-Hidroxilasa/metabolismo , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Técnicas In Vitro , Locomoción/fisiología , Masculino , Microscopía Electrónica de Transmisión , Neuronas/efectos de los fármacos , Núcleo Accumbens/citología , Fosfoproteínas/metabolismo , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Transporte de Proteínas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Fracciones Subcelulares/metabolismo , Sinaptosomas/metabolismo , Sinaptosomas/ultraestructura
14.
Biochim Biophys Acta ; 1813(1): 14-26, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21056598

RESUMEN

The physiological responses of AMPA receptors can be modulated through the differential expression of their subunits and by modifying their number at the cell surface. Here we have studied the expression of AMPA receptor subunits (GluR1-4) mRNAs in cerebellar granule cells grown in depolarizing (25mMK(+)) medium, and we have evaluated the effect of decreasing the [K(+)] in the culture medium for 24 h on both GluR1-4 expression (both mRNA and protein) and their presence at the plasma membrane. The expression of the four AMPAR subunits increases as the [K(+)] decreases, although the increase in GluR2 and GluR3 was only observed in the cell soma but not in the dendrites. Calcium entry through L-type calcium channel and CaMKIV activation are responsible for the reduction in the expression of AMPA receptor subunits in cells cultured in depolarizing conditions. Indeed, prolonged reduction of extracellular [K(+)] or blockage of L-type calcium channels enhanced both the surface insertion of the four AMPAR subunits and the AMPA response measured through intracellular calcium increase. These findings reveal a balanced increase in functional AMPA receptors at the surface of cells that can trigger strong increases in calcium in response to the persistent reduction of calcium entry.


Asunto(s)
Cerebelo/metabolismo , Potenciales de la Membrana , Receptores AMPA/metabolismo , Animales , Western Blotting , Calcio/metabolismo , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 4 Dependiente de Calcio Calmodulina/metabolismo , Células Cultivadas , Cerebelo/citología , Femenino , Técnicas para Inmunoenzimas , Masculino , Neuronas/citología , Neuronas/metabolismo , Fosforilación , Subunidades de Proteína , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Ratas , Ratas Wistar , Receptores AMPA/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Ácido alfa-Amino-3-hidroxi-5-metil-4-isoxazol Propiónico/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...