Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Neuroradiology ; 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39102087

RESUMEN

BACKGROUND: Tuberculomas are prevalent in developing countries and demonstrate variable signals on MRI resulting in the overlap of the conventional imaging phenotype with other entities including glioma and brain metastasis. An accurate MRI diagnosis is important for the early institution of anti-tubercular therapy, decreased patient morbidity, mortality, and prevents unnecessary neurosurgical excision. This study aims to assess the potential of radiomics features of regular contrast images including T1W, T2W, T2W FLAIR, T1W post contrast images, and ADC maps, to differentiate between tuberculomas, high-grade-gliomas and metastasis, the commonest intra parenchymal mass lesions encountered in the clinical practice. METHODS: This retrospective study includes 185 subjects. Images were resampled, co-registered, skull-stripped, and zscore-normalized. Automated lesion segmentation was performed followed by radiomics feature extraction, train-test split, and features reduction. All machine learning algorithms that natively support multiclass classification were trained and assessed on features extracted from individual modalities as well as combined modalities. Model explainability of the best performing model was calculated using the summary plot obtained by SHAP values. RESULTS: Extra tree classifier trained on the features from ADC maps was the best classifier for the discrimination of tuberculoma from high-grade-glioma and metastasis with AUC-score of 0.96, accuracy-score of 0.923, Brier-score of 0.23. CONCLUSION: This study demonstrates that radiomics features are effective in discriminating between tuberculoma, metastasis, and high-grade-glioma with notable accuracy and AUC scores. Features extracted from the ADC maps surfaced as the most robust predictors of the target variable.

2.
J Neurol ; 271(5): 2521-2528, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38265472

RESUMEN

BACKGROUND: Free water (FW)-corrected diffusion measures are more precise compared to standard diffusion measures. This study comprehensively evaluates FW and corrected diffusion metrics for whole brain white and deep gray matter (WM, GM) structures in patients with Parkinson's disease (PD), progressive supranuclear palsy (PSP) and multiple system atrophy (MSA) and attempts to ascertain the probable patterns of WM abnormalities. METHOD: Diffusion MRI was acquired for subjects with PD (n = 133), MSA (n = 25), PSP (n = 30) and matched healthy controls (HC) (n = 99, n = 24, n = 12). Diffusion metrics of FA, MD, AD, RD were generated and FW, corrected FA maps were calculated using a bi-tensor model. TBSS was carried out at 5000 permutations with significance at p < 0.05. For GM, diffusivity maps were extracted from the basal ganglia, and analyzed at an FDR with p < 0.05. RESULTS: Compared to HC, PD showed focal changes in FW. MSA showed changes in the cerebellum and brainstem, and PSP showed increase in FW involving supratentorial WM and midbrain. All three showed increased substantia nigra FW. MSA, PSP demonstrated increased FW in bilateral putamen. PD showed increased FW in left GP externa, and bilateral thalamus. Compared to HC, MSA had increased FW in bilateral GP interna, and left thalamic. PSP had an additional increase in FW of the right GP externa, right GP interna, and bilateral thalamus. CONCLUSION: The present study demonstrated definitive differences in the patterns of FW alterations between PD and atypical parkinsonian disorders suggesting the possibility of whole brain FW maps being used as markers for diagnosis of these disorders.


Asunto(s)
Encéfalo , Atrofia de Múltiples Sistemas , Enfermedad de Parkinson , Parálisis Supranuclear Progresiva , Humanos , Enfermedad de Parkinson/diagnóstico por imagen , Masculino , Femenino , Anciano , Persona de Mediana Edad , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Atrofia de Múltiples Sistemas/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Imagen de Difusión por Resonancia Magnética/métodos , Trastornos Parkinsonianos/diagnóstico por imagen , Agua , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/patología , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología
3.
Front Neurol ; 12: 648092, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34367044

RESUMEN

Rationale and Objectives: To build a machine learning-based diagnostic model that can accurately distinguish adult supratentorial extraventricular ependymoma (STEE) from similarly appearing high-grade gliomas (HGG) using quantitative radiomic signatures from a multi-parametric MRI framework. Materials and Methods: We computed radiomic features on the preprocessed and segmented tumor masks from a pre-operative multimodal MRI dataset [contrast-enhanced T1 (T1ce), T2, fluid-attenuated inversion recovery (FLAIR), apparent diffusion coefficient (ADC)] from STEE (n = 15), HGG-Grade IV (HGG-G4) (n = 24), and HGG-Grade III (HGG-G3) (n = 36) patients, followed by an optimum two-stage feature selection and multiclass classification. Performance of multiple classifiers were evaluated on both unimodal and multimodal feature sets and most discriminative radiomic features involved in classification of STEE from HGG subtypes were obtained. Results: Multimodal features demonstrated higher classification performance over unimodal feature set in discriminating STEE and HGG subtypes with an accuracy of 68% on test data and above 80% on cross validation, along with an overall above 90% specificity. Among unimodal feature sets, those extracted from FLAIR demonstrated high classification performance in delineating all three tumor groups. Texture-based radiomic features particularly from FLAIR were most important in discriminating STEE from HGG-G4, whereas first-order features from T2 and ADC consistently ranked higher in differentiating multiple tumor groups. Conclusions: This study illustrates the utility of radiomics-based multimodal MRI framework in accurately discriminating similarly appearing adult STEE from HGG subtypes. Radiomic features from multiple MRI modalities could capture intricate and complementary information for a robust and highly accurate multiclass tumor classification.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...