Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 6966, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39138196

RESUMEN

Pentraxin 3 (PTX3), a long pentraxin and a humoral pattern recognition molecule (PRM), has been demonstrated to be protective against Aspergillus fumigatus, an airborne human fungal pathogen. We explored its mode of interaction with A. fumigatus, and the resulting implications in the host immune response. Here, we demonstrate that PTX3 interacts with A. fumigatus in a morphotype-dependent manner: (a) it recognizes germinating conidia through galactosaminogalactan, a surface exposed cell wall polysaccharide of A. fumigatus, (b) in dormant conidia, surface proteins serve as weak PTX3 ligands, and (c) surfactant protein D (SP-D) and the complement proteins C1q and C3b, the other humoral PRMs, enhance the interaction of PTX3 with dormant conidia. SP-D, C3b or C1q opsonized conidia stimulated human primary immune cells to release pro-inflammatory cytokines and chemokines. However, subsequent binding of PTX3 to SP-D, C1q or C3b opsonized conidia significantly decreased the production of pro-inflammatory cytokines/chemokines. PTX3 opsonized germinating conidia also significantly lowered the production of pro-inflammatory cytokines/chemokines while increasing IL-10 (an anti-inflammatory cytokine) released by immune cells when compared to the unopsonized counterpart. Overall, our study demonstrates that PTX3 recognizes A. fumigatus either directly or by interplaying with other humoral PRMs, thereby restraining detrimental inflammation. Moreover, PTX3 levels were significantly higher in the serum of patients with invasive pulmonary aspergillosis (IPA) and COVID-19-associated pulmonary aspergillosis (CAPA), supporting previous observations in IPA patients, and suggesting that it could be a potential panel-biomarker for these pathological conditions caused by A. fumigatus.


Asunto(s)
Aspergillus fumigatus , Proteína C-Reactiva , Complemento C1q , Componente Amiloide P Sérico , Esporas Fúngicas , Aspergillus fumigatus/inmunología , Componente Amiloide P Sérico/metabolismo , Componente Amiloide P Sérico/inmunología , Humanos , Esporas Fúngicas/inmunología , Proteína C-Reactiva/metabolismo , Proteína C-Reactiva/inmunología , Complemento C1q/metabolismo , Complemento C1q/inmunología , Proteína D Asociada a Surfactante Pulmonar/metabolismo , Proteína D Asociada a Surfactante Pulmonar/inmunología , Complemento C3b/inmunología , Complemento C3b/metabolismo , Citocinas/metabolismo , Citocinas/inmunología , Interleucina-10/metabolismo , Interleucina-10/inmunología , Aspergilosis/inmunología , Aspergilosis/microbiología , Interacciones Huésped-Patógeno/inmunología , Inmunidad Humoral , Femenino , Polisacáridos
2.
Genes (Basel) ; 15(5)2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38790226

RESUMEN

Periprosthetic joint infections (PJIs) are serious complications of prosthetic surgery. The criteria for the diagnosis of PJI integrate clinical and laboratory findings in a complex and sometimes inconclusive workflow. Host immune factors hold potential as diagnostic biomarkers in bone and joint infections. We reported that the humoral pattern-recognition molecule long pentraxin 3 (PTX3) predicts PJI in total hip and knee arthroplasty (THA and TKA, respectively). If and how genetic variation in PTX3 and inflammatory genes that affect its expression (IL-1ß, IL-6, IL-10, and IL-17A) contributes to the risk of PJI is unknown. We conducted a case-control study on a Caucasian historic cohort of THA and TKA patients who had prosthesis explant due to PJI (cases) or aseptic complications (controls). Saliva was collected from 93 subjects and used to extract DNA and genotype PTX3, IL-1ß, IL-6, IL-10, and IL-17A single-nucleotide polymorphisms (SNPs). Moreover, the concentration of IL-1ß, IL-10, and IL-6 was measured in synovial fluid and plasma. No association was found between PTX3 polymorphisms and PJI; however, the AGG haplotype, encompassing rs2853550, rs1143634, and rs1143627 in IL-1ß, was linked to the infection (p = 0.017). Also, synovial levels of all inflammatory markers were higher in cases than in controls, and a correlation emerged between synovial concentration of PTX3 and that of IL-1ß in cases only (Spearman r = 0.67, p = 0.004). We identified a relationship between rs2853550 and the synovial concentration of IL-1ß and PTX3. Our findings suggest that IL-1ß SNPs could be used for the early identification of THA and TKA patients with a high risk of infection.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Artroplastia de Reemplazo de Rodilla , Predisposición Genética a la Enfermedad , Interleucina-1beta , Polimorfismo de Nucleótido Simple , Infecciones Relacionadas con Prótesis , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Artroplastia de Reemplazo de Cadera/efectos adversos , Artroplastia de Reemplazo de Rodilla/efectos adversos , Proteína C-Reactiva/genética , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Marcadores Genéticos , Interleucina-1beta/genética , Infecciones Relacionadas con Prótesis/genética , Componente Amiloide P Sérico/genética , Componente Amiloide P Sérico/metabolismo
3.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-38068970

RESUMEN

The long pentraxin 3 (PTX3) is a soluble glycoprotein made by immune and nonimmune cells endowed with pleiotropic functions in innate immunity, inflammation, and tissue remodeling. PTX3 has recently emerged as a mediator of bone turnover in both physiological and pathological conditions, with direct and indirect effects on osteoblasts and osteoclasts. This notwithstanding, its role in bone biology, with major regard to the osteogenic potential of osteoblasts and their interplay with osteoclasts, is at present unclear. Here, we investigated the contribution of this pentraxin to bone deposition in the osteogenic lineage by assessing collagen production, mineralization capacity, osteoblast maturation, extracellular matrix gene expression, and inflammatory mediators' production in primary osteoblasts from the calvaria of wild-type (WT) and Ptx3-deficient (Ptx3-/-) mice. Also, we evaluated the effect of PTX3 on osteoclastogenesis in cocultures of primary osteoblasts and bone marrow-derived osteoclasts. Our investigations were carried out both in physiological and inflammatory conditions to recapitulate in vitro aspects of inflammatory diseases of the bone. We found that primary osteoblasts from WT animals constitutively expressed low levels of the protein in osteogenic noninflammatory conditions, and genetic ablation of PTX3 in these cells had no major impact on collagen and hydroxyapatite deposition. However, Ptx3-/- osteoblasts had an increased RANKL/OPG ratio and CD44 expression, which resulted in in enhanced osteoclastogenesis when cocultured with bone marrow monocytes. Inflammation (modelled through administration of tumor necrosis factor-α, TNF-α) boosted the expression and accumulation of PTX3 and inflammatory mediators in WT osteoblasts. In these conditions, Ptx3 genetic depletion was associated with reduced collagen deposition and immune modulators' production. Our study shed light on the role of PTX3 in osteoblast and osteoclast biology and identified a major effect of inflammation on the bone-related properties of this pentraxin, which might be relevant for therapeutic and/or diagnostic purposes in musculoskeletal pathology.


Asunto(s)
Osteoclastos , Osteogénesis , Ratones , Animales , Osteogénesis/genética , Osteoclastos/metabolismo , Osteoblastos/metabolismo , Inflamación/metabolismo , Diferenciación Celular , Cráneo/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Colágeno/metabolismo , Mediadores de Inflamación/metabolismo , Ligando RANK/metabolismo
4.
Front Immunol ; 14: 1274634, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37885881

RESUMEN

Soluble pattern recognition molecules (PRMs) are a heterogenous group of proteins that recognize pathogen- and danger-associated molecular patterns (PAMPs and DAMPs, respectively), and cooperate with cell-borne receptors in the orchestration of innate and adaptive immune responses to pathogenic insults and tissue damage. Amongst soluble PRMs, pentraxins are a family of highly conserved proteins with distinctive structural features. Originally identified in the early 1990s as an early inflammatory gene, PTX3 is the prototype of long pentraxins. Unlike the short pentraxin C reactive protein (CRP), whose expression is mostly confined to the liver, PTX3 is made by several immune and non-immune cells at sites of infection and inflammation, where it intercepts fundamental aspects of infection immunity, inflammation, and tissue remodeling. Of note, PTX3 cross talks to components of the complement system to control cancer-related inflammation and disposal of pathogens. Also, it is an essential component of inflammatory extracellular matrices (ECMs) through crosslinking of hyaluronic acid and turn-over of provisional fibrin networks that assemble at sites of tissue injury. This functional diversity is mediated by unique structural characteristics whose fine details have been unveiled only recently. Here, we revisit the structure/function relationships of this long pentraxin in light of the most recent advances in its structural biology, with a focus on the interplay with complement and the emerging roles as a component of the ECM. Differences to and similarities with the short pentraxins are highlighted and discussed.


Asunto(s)
Proteína C-Reactiva , Inmunidad Innata , Componente Amiloide P Sérico , Humanos , Proteína C-Reactiva/química , Proteínas del Sistema Complemento , Inflamación , Componente Amiloide P Sérico/química
5.
Elife ; 122023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37222419

RESUMEN

Streptococcus pneumoniae is a major pathogen in children, elderly subjects, and immunodeficient patients. Pentraxin 3 (PTX3) is a fluid-phase pattern recognition molecule (PRM) involved in resistance to selected microbial agents and in regulation of inflammation. The present study was designed to assess the role of PTX3 in invasive pneumococcal infection. In a murine model of invasive pneumococcal infection, PTX3 was strongly induced in non-hematopoietic (particularly, endothelial) cells. The IL-1ß/MyD88 axis played a major role in regulation of the Ptx3 gene expression. Ptx3-/- mice presented more severe invasive pneumococcal infection. Although high concentrations of PTX3 had opsonic activity in vitro, no evidence of PTX3-enhanced phagocytosis was obtained in vivo. In contrast, Ptx3-deficient mice showed enhanced recruitment of neutrophils and inflammation. Using P-selectin-deficient mice, we found that protection against pneumococcus was dependent upon PTX3-mediated regulation of neutrophil inflammation. In humans, PTX3 gene polymorphisms were associated with invasive pneumococcal infections. Thus, this fluid-phase PRM plays an important role in tuning inflammation and resistance against invasive pneumococcal infection.


Asunto(s)
Inflamación , Infecciones Neumocócicas , Animales , Ratones , Inflamación/metabolismo , Neutrófilos/metabolismo , Fagocitosis , Infecciones Neumocócicas/genética , Infecciones Neumocócicas/metabolismo , Streptococcus pneumoniae
6.
J Clin Med ; 12(3)2023 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-36769703

RESUMEN

BACKGROUND: Preoperative diagnosis of periprosthetic joint infections (PJIs) poses an unmet clinical challenge. The long pentraxin PTX3 is a component of the innate immune system involved in infection immunity. This study evaluated the potential of synovial and plasmatic PTX3 in the diagnosis of hip and knee PJIs. METHODS: Consecutive total hip and knee arthroplasty (THA/TKA) revisions were prospectively included and classified as septic or aseptic according to the European Bone and Joint Infection Society (EBJIS) and Musculoskeletal Infection Society (MSIS) criteria. The concentration of PTX3 in plasma and synovial fluid samples was measured with ELISA. The AUC, threshold value, sensitivity, specificity, and positive and negative likelihood ratios were calculated using the ROC (receiver operating characteristic) curve method. RESULTS: The study population included 128 patients (94 THAs; 34 TKAs). The AUC of the synovial PTX3 based on EBJIS criteria was 0.85 (p < 0.0001), with a sensitivity of 81.13% and a specificity of 93.33%. The AUC based on MSIS criteria was 0.95 (p < 0.001), with a sensitivity of 91.43% and a specificity of 89.25%. Plasmatic PTX3 failed to discriminate infected from non-infected patients. CONCLUSIONS: Synovial PTX3 demonstrated an excellent diagnostic potential in hip and knee PJIs, with a very high specificity irrespective of the diagnostic criteria for PJI.

7.
Front Immunol ; 13: 1048505, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36483565

RESUMEN

Osteomyelitis (OM) is an infectious disease of the bone predominantly caused by the opportunistic bacterium Staphylococcus aureus (S. aureus). Typically established upon hematogenous spread of the pathogen to the musculoskeletal system or contamination of the bone after fracture or surgery, osteomyelitis has a complex pathogenesis with a critical involvement of both osteal and immune components. Colonization of the bone by S. aureus is traditionally proposed to induce functional inhibition and/or apoptosis of osteoblasts, alteration of the RANKL/OPG ratio in the bone microenvironment and activation of osteoclasts; all together, these events locally subvert tissue homeostasis causing pathological bone loss. However, this paradigm has been challenged in recent years, in fact osteoblasts are emerging as active players in the induction and orientation of the immune reaction that mounts in the bone during an infection. The interaction with immune cells has been mostly ascribed to osteoblast-derived soluble mediators that add on and synergize with those contributed by professional immune cells. In this respect, several preclinical and clinical observations indicate that osteomyelitis is accompanied by alterations in the local and (sometimes) systemic levels of both pro-inflammatory (e.g., IL-6, IL-1α, TNF-α, IL-1ß) and anti-inflammatory (e.g., TGF-ß1) cytokines. Here we revisit the role of osteoblasts in bacterial OM, with a focus on their secretome and its crosstalk with cellular and molecular components of the bone microenvironment and immune system.


Asunto(s)
Staphylococcus aureus
8.
Int J Mol Sci ; 23(21)2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36362067

RESUMEN

Age-related macular degeneration (AMD) is a complex and multifactorial disease, resulting from the interaction of environmental and genetic factors. The continuous discovery of associations between genetic polymorphisms and AMD gives reason for the pivotal role attributed to the genetic component to its development. In that light, genetic tests and polygenic scores have been created to predict the risk of development and response to therapy. Still, none of them have yet been validated. Furthermore, there is no evidence from a clinical trial that the determination of the individual genetic structure can improve treatment outcomes. In this comprehensive review, we summarize the polymorphisms of the main pathogenetic ways involved in AMD development to identify which of them constitutes a potential therapeutic target. As complement overactivation plays a major role, the modulation of targeted complement proteins seems to be a promising therapeutic approach. Herein, we summarize the complement-modulating molecules now undergoing clinical trials, enlightening those in an advanced phase of trial. Gene therapy is a potential innovative one-time treatment, and its relevance is quickly evolving in the field of retinal diseases. We describe the state of the art of gene therapies now undergoing clinical trials both in the field of complement-suppressors and that of anti-VEGF.


Asunto(s)
Degeneración Macular , Humanos , Degeneración Macular/genética , Degeneración Macular/terapia , Degeneración Macular/patología , Proteínas del Sistema Complemento/genética , Polimorfismo Genético , Inhibidores de la Angiogénesis , Polimorfismo de Nucleótido Simple
9.
Int J Mol Sci ; 23(2)2022 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-35054869

RESUMEN

The retinal pigmented epithelium (RPE) plays a pivotal role in retinal homeostasis. It is therefore an interesting target to fill the unmet medical need of different retinal diseases, including age-related macular degeneration and Stargardt disease. RPE replacement therapy may use different cellular sources: induced pluripotent stem cells or embryonic stem cells. Cells can be transferred as suspension on a patch with different surgical approaches. Results are promising although based on very limited samples. In this review, we summarize the current progress of RPE replacement and provide a comparative assessment of different published approaches which may become standard of care in the future.


Asunto(s)
Oftalmólogos , Epitelio Pigmentado de la Retina/patología , Investigación Biomédica Traslacional , Ensayos Clínicos como Asunto , Humanos , Degeneración Macular/terapia , Enfermedad de Stargardt/terapia
11.
Front Immunol ; 12: 785883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34868070

RESUMEN

The ubiquitous mold Aspergillus fumigatus is the major etiologic agent of invasive aspergillosis, a life-threatening infection amongst immune compromised individuals. An increasing body of evidence indicates that effective disposal of A. fumigatus requires the coordinate action of both cellular and humoral components of the innate immune system. Early recognition of the fungal pathogen, in particular, is mediated by a set of diverse soluble pattern recognition molecules (PRMs) that act as "ancestral antibodies" inasmuch as they are endowed with opsonic, pro-phagocytic and killing properties. Pivotal is, in this respect, the contribution of the complement system, which functionally cooperates with cell-borne pattern recognition receptors (PRRs) and other soluble PRMs, including pentraxins. Indeed, complement and pentraxins form an integrated system with crosstalk, synergism, and regulation, which stands as a paradigm of the interplay between PRMs in the mounting and orchestration of antifungal immunity. Following upon our past experience with the long pentraxin PTX3, a well-established immune effector in the host response to A. fumigatus, we recently reported that this fungal pathogen is targeted in vitro and in vivo by the short pentraxin Serum Amyloid P component (SAP) too. Similar to PTX3, SAP promotes phagocytosis and disposal of the fungal pathogen via complement-dependent pathways. However, the two proteins exploit different mechanisms of complement activation and receptor-mediated phagocytosis, which further extends complexity and integration of the complement-pentraxin crosstalk in the immune response to A. fumigatus. Here we revisit this crosstalk in light of the emerging roles of SAP as a novel PRM with antifungal activity.


Asunto(s)
Aspergilosis/inmunología , Aspergilosis/metabolismo , Aspergillus fumigatus/inmunología , Proteína C-Reactiva/metabolismo , Activación de Complemento/inmunología , Proteínas del Sistema Complemento/inmunología , Componente Amiloide P Sérico/inmunología , Animales , Aspergilosis/microbiología , Biomarcadores , Susceptibilidad a Enfermedades/inmunología , Interacciones Huésped-Patógeno/inmunología , Humanos , Inmunidad Innata , Componente Amiloide P Sérico/metabolismo
12.
Nat Cancer ; 2(2): 218-232, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-34505065

RESUMEN

Complement has emerged as a component of tumor promoting inflammation. We conducted a systematic assessment of the role of complement activation and effector pathways in sarcomas. C3-/-, MBL1/2-/- and C4-/- mice showed reduced susceptibility to 3-methylcholanthrene sarcomagenesis and transplanted sarcomas, whereas C1q and factor B deficiency had marginal effects. Complement 3a receptor (C3aR), but not C5aR1 and C5aR2, deficiency mirrored the phenotype of C3-/- mice. C3 and C3aR deficiency were associated with reduced accumulation and functional skewing of tumor-associated macrophages, increased T cell activation and response to anti-PD-1 therapy. Transcriptional profiling of sarcoma infiltrating macrophages and monocytes revealed the enrichment of MHC II-dependent antigen presentation pathway in C3-deficient cells. In patients, C3aR expression correlated with a macrophage population signature and C3 deficiency-associated signatures predicted better clinical outcome. These results suggest that the lectin pathway and C3a/C3aR axis are key components of complement and macrophage-mediated sarcoma promotion and immunosuppression.


Asunto(s)
Lectinas , Receptores de Complemento/metabolismo , Sarcoma , Animales , Activación de Complemento/fisiología , Humanos , Terapia de Inmunosupresión , Lectinas/metabolismo , Ratones , Monocitos/metabolismo , Receptor de Anafilatoxina C5a/metabolismo , Sarcoma/tratamiento farmacológico
13.
Pathogens ; 10(7)2021 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-34357987

RESUMEN

Osteomyelitis (OM) is an infectious disease of the bone primarily caused by the opportunistic pathogen Staphylococcus aureus (SA). This Gram-positive bacterium has evolved a number of strategies to evade the immune response and subvert bone homeostasis, yet the underlying mechanisms remain poorly understood. OM has been modeled in vitro to challenge pathogenetic hypotheses in controlled conditions, thus providing guidance and support to animal experimentation. In this regard, traditional 2D models of OM inherently lack the spatial complexity of bone architecture. Three-dimensional models of the disease overcome this limitation; however, they poorly reproduce composition and texture of the natural bone. Here, we developed a new 3D model of OM based on cocultures of SA and murine osteoblastic MC3T3-E1 cells on magnesium-doped hydroxyapatite/collagen I (MgHA/Col) scaffolds that closely recapitulate the bone extracellular matrix. In this model, matrix-dependent effects were observed in proliferation, gene transcription, protein expression, and cell-matrix interactions both of the osteoblastic cell line and of bacterium. Additionally, these had distinct metabolic and gene expression profiles, compared to conventional 2D settings, when grown on MgHA/Col scaffolds in separate monocultures. Our study points to MgHA/Col scaffolds as biocompatible and bioactive matrices and provides a novel and close-to-physiology tool to address the pathogenetic mechanisms of OM at the host-pathogen interface.

14.
Nat Commun ; 12(1): 3739, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-34145258

RESUMEN

Serum amyloid P component (SAP, also known as Pentraxin 2; APCS gene) is a component of the humoral arm of innate immunity involved in resistance to bacterial infection and regulation of tissue remodeling. Here we investigate the role of SAP in antifungal resistance. Apcs-/- mice show enhanced susceptibility to A. fumigatus infection. Murine and human SAP bound conidia, activate the complement cascade and enhance phagocytosis by neutrophils. Apcs-/- mice are defective in vivo in terms of recruitment of neutrophils and phagocytosis in the lungs. Opsonic activity of SAP is dependent on the classical pathway of complement activation. In immunosuppressed mice, SAP administration protects hosts against A. fumigatus infection and death. In the context of a study of hematopoietic stem-cell transplantation, genetic variation in the human APCS gene is associated with susceptibility to invasive pulmonary aspergillosis. Thus, SAP is a fluid phase pattern recognition molecule essential for resistance against A. fumigatus.


Asunto(s)
Aspergillus fumigatus/inmunología , Aspergilosis Pulmonar Invasiva/inmunología , Neutrófilos/inmunología , Componente Amiloide P Sérico/genética , Animales , Células Cultivadas , Variación Genética/genética , Humanos , Inmunidad Innata/inmunología , Huésped Inmunocomprometido/inmunología , Aspergilosis Pulmonar Invasiva/patología , Pulmón/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fagocitosis/inmunología
15.
Front Pharmacol ; 12: 811344, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35069222

RESUMEN

Age related macular degeneration (AMD) and diabetic retinopathy (DR) are multifactorial, neurodegenerative and inflammatory diseases of the eye primarily involving cellular and molecular components of the outer and inner blood-retina barriers (BRB), respectively. Largely contributed by genetic factors, particularly polymorphisms in complement genes, AMD is a paradigm of retinal immune dysregulation. DR, a major complication of diabetes mellitus, typically presents with increased vascular permeability and occlusion of the retinal vasculature that leads, in the proliferative form of the disease, to neovascularization, a pathogenic trait shared with advanced AMD. In spite of distinct etiology and clinical manifestations, both pathologies share common drivers, such as chronic inflammation, either of immune (in AMD) or metabolic (in DR) origin, which initiates and propagates degeneration of the neural retina, yet the underlying mechanisms are still unclear. As a soluble pattern recognition molecule with complement regulatory functions and a marker of vascular damage, long pentraxin 3 (PTX3) is emerging as a novel player in ocular homeostasis and a potential pharmacological target in neurodegenerative disorders of the retina. Physiologically present in the human eye and induced in inflammatory conditions, this protein is strategically positioned at the BRB interface, where it acts as a "molecular trap" for complement, and modulates inflammation both in homeostatic and pathological conditions. Here, we discuss current viewpoints on PTX3 and retinal diseases, with a focus on AMD and DR, the roles therein proposed for this pentraxin, and their implications for the development of new therapeutic strategies.

16.
Front Pharmacol ; 11: 591908, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33324220

RESUMEN

Dysregulation of the complement system is central to age-related macular degeneration (AMD), the leading cause of blindness in the developed world. Most of the genetic variation associated with AMD resides in complement genes, with the greatest risk associated with polymorphisms in the complement factor H (CFH) gene; factor H (FH) is the major inhibitor of the alternative pathway (AP) of complement that specifically targets C3b and the AP C3 convertase. Long pentraxin 3 (PTX3) is a soluble pattern recognition molecule that has been proposed to inhibit AP activation via recruitment of FH. Although present in the human retina, if and how PTX3 plays a role in AMD is still unclear. In this work we demonstrated the presence of PTX3 in the human vitreous and studied the PTX3-FH-C3b crosstalk and its effects on complement activation in a model of retinal pigment epithelium (RPE). RPE cells cultured in inflammatory AMD-like conditions overexpressed the PTX3 protein, and up-regulated AP activating genes. PTX3 bound RPE cells in a physiological setting, however this interaction was reduced in inflammatory conditions, whereby PTX3 had no complement-inhibiting activity on inflamed RPE. However, on non-cellular surfaces, PTX3 formed a stable ternary complex with FH and C3b that acted as a "hot spot" for complement inhibition. Our findings suggest a protective role for PTX3 in response to complement dysregulation in AMD and point to a novel mechanism of complement regulation by this pentraxin with potential implications in pathology and pharmacology of AMD.

18.
FEBS Lett ; 594(16): 2480-2501, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-31994174

RESUMEN

Aspergillosis is a life-threatening infection mostly affecting immunocompromised individuals and primarily caused by the saprophytic fungus Aspergillus fumigatus. At the host-pathogen interface, both cellular and humoral components of the innate immune system are increasingly acknowledged as essential players in the recognition and disposal of this opportunistic mold. Fundamental hereof is the contribution of the complement system, which deploys all three activation pathways in the battle against A. fumigatus, and functionally cooperates with other soluble pattern recognition molecules, including pentraxins. In particular, preclinical and clinical observations point to the long pentraxin PTX3 as a nonredundant and complement-dependent effector with protective functions against A. fumigatus. Based on past and current literature, here we discuss how the complement participates in the immune response to this fungal pathogen, and illustrate its crosstalk with the pentraxins, with a focus on PTX3. Emphasis is placed on the molecular mechanisms underlying such processes, the genetic evidence from human epidemiology, and the translational potential of the currently available knowledge.


Asunto(s)
Aspergilosis/inmunología , Aspergillus fumigatus/inmunología , Proteína C-Reactiva/inmunología , Proteínas del Sistema Complemento/inmunología , Componente Amiloide P Sérico/inmunología , Animales , Aspergilosis/genética , Aspergillus fumigatus/genética , Proteína C-Reactiva/genética , Proteínas del Sistema Complemento/genética , Humanos , Componente Amiloide P Sérico/genética
19.
Front Immunol ; 10: 2628, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31787987

RESUMEN

The innate immune system is equipped with a number of germ-line encoded soluble pattern recognition molecules (PRMs) that collectively mediate the humoral host response to infection and damage in cooperation with cells and tissues of the immune and non-immune compartments. Despite the impressive diversity in structure, source, and regulation across PRMs, these all share remarkably similar functions inasmuch as they recognize microbes and damaged tissues, activate complement, exert opsono-phagocytic activities, and regulate inflammation. The long pentraxin 3 (PTX3) is a prototypic soluble PRM. Long known as a major player in innate immunity, inflammation and matrix remodeling, only recently has PTX3 emerged as a mediator of bone homeostasis in rodents and humans. Ptx3-targeted mice exhibit reduced trabecular volume during bone development, and impaired callus mineralization following experimental fracture. The murine gene is expressed in vivo by non-hematopoietic periosteal cells in the early phases of fracture healing, and in vitro by maturing osteoblasts. Human osteoblasts do express the PTX3 protein, whose levels positively correlate with bone density in vivo and osteoblast proliferation and maturation in vitro, thus pointing to a role in bone deposition. Contrasting evidence, however, suggest osteoclastogenesis-promoting effects of PTX3, where its expression has been associated with periodontitis, arthritis, and bone metastasis, conditions hallmarked by inflammation and bone resorption. Here, we review past and recent literature on the functions exerted by this long pentraxin in bone biology, with major emphasis on physiological skeletal remodeling, fracture healing, and chronic diseases of the bone.


Asunto(s)
Huesos/fisiología , Proteína C-Reactiva/fisiología , Componente Amiloide P Sérico/fisiología , Animales , Enfermedades Óseas/metabolismo , Enfermedades Óseas/patología , Huesos/patología , Proteína C-Reactiva/genética , Enfermedad Crónica , Curación de Fractura , Homeostasis , Humanos , Componente Amiloide P Sérico/genética
20.
Stem Cells ; 37(7): 973-987, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30942926

RESUMEN

Mesenchymal stem cells (MSCs) are well established to have promising therapeutic properties. TNF-stimulated gene-6 (TSG-6), a potent tissue-protective and anti-inflammatory factor, has been demonstrated to be responsible for a significant part of the tissue-protecting properties mediated by MSCs. Nevertheless, current knowledge about the biological function of TSG-6 in MSCs is limited. Here, we demonstrated that TSG-6 is a crucial factor that influences many functional properties of MSCs. The transcriptomic sequencing analysis of wild-type (WT) and TSG-6-/- -MSCs shows that the loss of TSG-6 expression leads to the perturbation of several transcription factors, cytokines, and other key biological pathways. TSG-6-/- -MSCs appeared morphologically different with dissimilar cytoskeleton organization, significantly reduced size of extracellular vesicles, decreased cell proliferative rate, and loss of differentiation abilities compared with the WT cells. These cellular effects may be due to TSG-6-mediated changes in the extracellular matrix (ECM) environment. The supplementation of ECM with exogenous TSG-6, in fact, rescued cell proliferation and changes in morphology. Importantly, TSG-6-deficient MSCs displayed an increased capacity to release interleukin-6 conferring pro-inflammatory and pro-tumorigenic properties to the MSCs. Overall, our data provide strong evidence that TSG-6 is crucial for the maintenance of stemness and other biological properties of murine MSCs.


Asunto(s)
Moléculas de Adhesión Celular/genética , Transformación Celular Neoplásica/genética , Interleucina-6/genética , Células Madre Mesenquimatosas/metabolismo , Transcriptoma , Animales , Comunicación Autocrina/genética , Moléculas de Adhesión Celular/deficiencia , Proliferación Celular , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Citocinas/genética , Citocinas/metabolismo , Citoesqueleto/metabolismo , Citoesqueleto/ultraestructura , Matriz Extracelular/química , Matriz Extracelular/genética , Vesículas Extracelulares/química , Vesículas Extracelulares/genética , Femenino , Perfilación de la Expresión Génica , Humanos , Interleucina-6/metabolismo , Masculino , Células Madre Mesenquimatosas/citología , Redes y Vías Metabólicas/genética , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...