Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Int J Mol Sci ; 23(19)2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-36232958

RESUMEN

RAD51 is a central protein of homologous recombination and DNA repair processes that maintains genome stability and ensures the accurate repair of double-stranded breaks (DSBs). In this work, we assessed amyloid properties of RAD51 in vitro and in the bacterial curli-dependent amyloid generator (C-DAG) system. Resistance to ionic detergents, staining with amyloid-specific dyes, polarized microscopy, transmission electron microscopy (TEM), X-ray diffraction and other methods were used to evaluate the properties and structure of RAD51 aggregates. The purified human RAD51 protein formed detergent-resistant aggregates in vitro that had an unbranched cross-ß fibrillar structure, which is typical for amyloids, and were stained with amyloid-specific dyes. Congo-red-stained RAD51 aggregates demonstrated birefringence under polarized light. RAD51 fibrils produced sharp circular X-ray reflections at 4.7 Å and 10 Å, demonstrating that they had a cross-ß structure. Cytoplasmic aggregates of RAD51 were observed in cell cultures overexpressing RAD51. We demonstrated that a key protein that maintains genome stability, RAD51, has amyloid properties in vitro and in the C-DAG system and discussed the possible biological relevance of this observation.


Asunto(s)
Detergentes , Recombinasa Rad51 , Amiloide/metabolismo , Proteínas Amiloidogénicas/química , Colorantes , Inestabilidad Genómica , Humanos , Agregado de Proteínas , Recombinasa Rad51/química
2.
BMC Mol Biol ; 4: 2, 2003 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-12589713

RESUMEN

BACKGROUND: Termination of protein synthesis in eukaryotes involves at least two polypeptide release factors (eRFs) - eRF1 and eRF3. The highly conserved translation termination factor eRF1 in Saccharomyces cerevisiae is encoded by the essential gene SUP45. RESULTS: We have isolated five sup45-n (n from nonsense) mutations that cause nonsense substitutions in the following amino acid positions of eRF1: Y53 --> UAA, E266 --> UAA, L283 --> UAA, L317 --> UGA, E385 --> UAA. We found that full-length eRF1 protein is present in all mutants, although in decreased amounts. All mutations are situated in a weak termination context. All these sup45-n mutations are viable in different genetic backgrounds, however their viability increases after growth in the absence of wild-type allele. Any of sup45-n mutations result in temperature sensitivity (37 degrees C). Most of the sup45-n mutations lead to decreased spore viability and spores bearing sup45-n mutations are characterized by limited budding after germination leading to formation of microcolonies of 4-20 cells. CONCLUSIONS: Nonsense mutations in the essential gene SUP45 can be isolated in the absence of tRNA nonsense suppressors.


Asunto(s)
Codón sin Sentido/genética , Genes Esenciales/genética , Genes Fúngicos/genética , Factores de Terminación de Péptidos , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Alelos , Codón de Terminación/genética , Genes Letales/genética , Meiosis/genética , Supresión Genética/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA