Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Nucleic Acids Res ; 51(18): 9804-9820, 2023 10 13.
Artículo en Inglés | MEDLINE | ID: mdl-37650646

RESUMEN

All cells employ a combination of endo- and exoribonucleases to degrade long RNA polymers to fragments 2-5 nucleotides in length. These short RNA fragments are processed to monoribonucleotides by nanoRNases. Genetic depletion of nanoRNases has been shown to increase abundance of short RNAs. This deleteriously affects viability, virulence, and fitness, indicating that short RNAs are a metabolic burden. Previously, we provided evidence that NrnA is the housekeeping nanoRNase for Bacillus subtilis. Herein, we investigate the biological and biochemical functions of the evolutionarily related protein, B. subtilis NrnB (NrnBBs). These experiments show that NrnB is surprisingly different from NrnA. While NrnA acts at the 5' terminus of RNA substrates, NrnB acts at the 3' terminus. Additionally, NrnA is expressed constitutively under standard growth conditions, yet NrnB is selectively expressed during endospore formation. Furthermore, NrnA processes only short RNAs, while NrnB unexpectedly processes both short RNAs and longer RNAs. Indeed, inducible expression of NrnB can even complement the loss of the known global 3'-5' exoribonucleases, indicating that it acts as a general exonuclease. Together, these data demonstrate that NrnB proteins, which are widely found in Firmicutes, Epsilonproteobacteria and Archaea, are fundamentally different than NrnA proteins and may be used for specialized purposes.


Asunto(s)
Bacillus subtilis , Proteínas Bacterianas , Exorribonucleasas , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Exorribonucleasas/genética , Exorribonucleasas/metabolismo , Fosfodiesterasa I , ARN/metabolismo
2.
Res Sq ; 2023 Dec 27.
Artículo en Inglés | MEDLINE | ID: mdl-38234822

RESUMEN

Processing of RNA is a key regulatory mechanism for all living systems. We recently discovered a novel family of endoribonucleases that is conserved across all bacteria. Here, using crystallography, cryo-EM microscopy, biochemical, biophysical, and mass spectrometry techniques, we are able to shed light on a novel RNA cleavage mechanism in bacteria. We show that YicC, the prototypical member of this family, forms a hexameric channel that closes down on a 26-mer RNA substrate, and find that it cleaves across an RNA hairpin to generate several short fragments.

3.
RNA ; 28(2): 227-238, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34815358

RESUMEN

The Bacillus subtilis genome is predicted to encode numerous ribonucleases, including four 3' exoribonucleases that have been characterized to some extent. A strain containing gene knockouts of all four known 3' exoribonucleases is viable, suggesting that one or more additional RNases remain to be discovered. A protein extract from the quadruple RNase mutant strain was fractionated and RNase activity was followed, resulting in the identification of an enzyme activity catalyzed by the YloC protein. YloC is an endoribonuclease and is a member of the highly conserved "YicC family" of proteins that is widespread in bacteria. YloC is a metal-dependent enzyme that catalyzes the cleavage of single-stranded RNA, preferentially at U residues, and exists in an oligomeric form, most likely a hexamer. As such, YloC shares some characteristics with the SARS-CoV Nsp15 endoribonuclease. While the in vivo function of YloC in B. subtilis is yet to be determined, YloC was found to act similarly to YicC in an Escherichia coli in vivo assay that assesses decay of the small RNA, RyhB. Thus, YloC may play a role in small RNA regulation.


Asunto(s)
Bacillus subtilis/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Bacillus subtilis/enzimología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Endorribonucleasas/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Regulación Bacteriana de la Expresión Génica , Microorganismos Modificados Genéticamente , Mutación , Estabilidad del ARN , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Ribonucleasas/genética , Ribonucleasas/metabolismo , Especificidad por Sustrato , Proteínas no Estructurales Virales/metabolismo
4.
RNA Biol ; 18(11): 1692-1701, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-33323028

RESUMEN

Polynucleotide phosphorylase (PNPase), a 3' exoribonuclease that degrades RNA in the 3'-to-5' direction, is the major mRNA decay activity in Bacillus subtilis. PNPase is known to be inhibited in vitro by strong RNA secondary structure, and rapid mRNA turnover in vivo is thought to require an RNA helicase activity working in conjunction with PNPase. The most abundant RNA helicase in B. subtilis is CshA. We found for three small, monocistronic mRNAs that, for some RNA sequences, PNPase processivity was unimpeded even without CshA, whereas others required CshA for efficient degradation. A novel colour screen for decay of mRNA in B. subtilis was created, using mRNA encoded by the slrA gene, which is degraded from its 3' end by PNPase. A significant correlation between the predicted strength of a stem-loop structure, located in the body of the message, and PNPase processivity was observed. Northern blot analysis confirmed that PNPase processivity was greatly hindered by the internal RNA structure, and even more so in the absence of CshA. Three other B. subtilis RNA helicases did not appear to be involved in mRNA decay during vegetative growth. The results confirm the hypothesis that efficient 3' exonucleolytic decay of B. subtilis RNA depends on the combined activity of PNPase and CshA.


Asunto(s)
Bacillus subtilis/metabolismo , Proteínas Bacterianas/metabolismo , Polirribonucleótido Nucleotidiltransferasa/metabolismo , ARN Helicasas/metabolismo , Estabilidad del ARN , ARN Bacteriano/metabolismo , ARN Mensajero/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/crecimiento & desarrollo , Proteínas Bacterianas/genética , Polirribonucleótido Nucleotidiltransferasa/genética , ARN Helicasas/genética , ARN Bacteriano/genética , ARN Mensajero/genética
5.
Nucleic Acids Res ; 42(20): 12758-67, 2014 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-25313156

RESUMEN

While hydroxyl radical cleavage is widely used to map RNA tertiary structure, lack of mechanistic understanding of strand break formation limits the degree of structural insight that can be obtained from this experiment. Here, we determine how individual ribose hydrogens of sarcin/ricin loop RNA participate in strand cleavage. We find that substituting deuterium for hydrogen at a ribose 5'-carbon produces a kinetic isotope effect on cleavage; the major cleavage product is an RNA strand terminated by a 5'-aldehyde. We conclude that hydroxyl radical abstracts a 5'-hydrogen atom, leading to RNA strand cleavage. We used this approach to obtain structural information for a GUA base triple, a common tertiary structural feature of RNA. Cleavage at U exhibits a large 5' deuterium kinetic isotope effect, a potential signature of a base triple. Others had noted a ribose-phosphate hydrogen bond involving the G 2'-OH and the U phosphate of the GUA triple, and suggested that this hydrogen bond contributes to backbone rigidity. Substituting deoxyguanosine for G, to eliminate this hydrogen bond, results in a substantial decrease in cleavage at G and U of the triple. We conclude that this hydrogen bond is a linchpin of backbone structure around the triple.


Asunto(s)
Radical Hidroxilo/química , ARN/química , Aldehídos/análisis , Deuterio , Hidrógeno/química , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , División del ARN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA