Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Chemistry (Basel) ; 3(3): 1047-1056, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37830058

RESUMEN

The dopamine D2 agonist MCL-524 is selective for the D2 receptor in the high-affinity state (D2high), and, therefore, the PET analogue, [18F]MCL-524, may facilitate the elucidation of the role of D2high in disorders such as schizophrenia. However, the previously reported synthesis of [18F]MCL-524 proved difficult to replicate and was lacking experimental details. We therefore developed a new synthesis of [18F]MCL-524 using a "non-anhydrous, minimally basic" (NAMB) approach. In this method, [18F]F- is eluted from a small (10-12 mg) trap-and-release column with tetraethylammonium tosylate (2.37 mg) in 7:3 MeCN:H2O (0.1 mL), rather than the basic carbonate or bicarbonate solution that is most often used for [18F]F- recovery. The tosylated precursor (1 mg) in 0.9 mL anhydrous acetonitrile was added directly to the eluate, without azeotropic drying, and the solution was heated (150 °C/15 min). The catechol was then deprotected with the Lewis acid In(OTf)3 (10 equiv.; 150 °C/20 min). In contrast to deprotection with protic acids, Lewis-acid-based deprotection facilitated the efficient removal of byproducts by HPLC and eliminated the need for SPE extraction prior to HPLC purification. Using the NAMB approach, [18F]MCL-524 was obtained in 5-9% RCY (decay-corrected, n = 3), confirming the utility of this improved method for the multistep synthesis of [18F]MCL-524 and suggesting that it may applicable to the synthesis of other 18F-labeled radiotracers.

2.
Am J Physiol Renal Physiol ; 319(3): F403-F413, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32686525

RESUMEN

Acute kidney injury is a common clinical disorder and one of the major causes of morbidity and mortality in the postoperative period. In this study, the safety and efficacy of autologous mitochondrial transplantation by intra-arterial injection for renal protection in a swine model of bilateral renal ischemia-reperfusion injury were investigated. Female Yorkshire pigs underwent percutaneous bilateral temporary occlusion of the renal arteries with balloon catheters. Following 60 min of ischemia, the balloon catheters were deflated and animals received either autologous mitochondria suspended in vehicle or vehicle alone, delivered as a single bolus to the renal arteries. The injected mitochondria were rapidly taken up by the kidney and were distributed throughout the tubular epithelium of the cortex and medulla. There were no safety-related issues detected with mitochondrial transplantation. Following 24 h of reperfusion, estimated glomerular filtration rate and urine output were significantly increased while serum creatinine and blood urea nitrogen were significantly decreased in swine that received mitochondria compared with those that received vehicle. Gross anatomy, histopathological analysis, acute tubular necrosis scoring, and transmission electron microscopy showed that the renal cortex of the vehicle-treated group had extensive coagulative necrosis of primarily proximal tubules, while the mitochondrial transplanted kidney showed only patchy mild acute tubular injury. Renal cortex IL-6 expression was significantly increased in vehicle-treated kidneys compared with the kidneys that received mitochondrial transplantation. These results demonstrate that mitochondrial transplantation by intra-arterial injection provides renal protection from ischemia-reperfusion injury, significantly enhancing renal function and reducing renal damage.


Asunto(s)
Lesión Renal Aguda/terapia , Mitocondrias/trasplante , Daño por Reperfusión/terapia , Animales , Femenino , Inyecciones Intraarteriales , Porcinos
3.
Am J Physiol Lung Cell Mol Physiol ; 318(1): L78-L88, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31693391

RESUMEN

The most common cause of acute lung injury is ischemia-reperfusion injury (IRI), during which mitochondrial damage occurs. We have previously demonstrated that mitochondrial transplantation is an efficacious therapy to replace or augment mitochondria damaged by IRI, allowing for enhanced muscle viability and function in cardiac tissue. Here, we investigate the efficacy of mitochondrial transplantation in a murine lung IRI model using male C57BL/6J mice. Transient ischemia was induced by applying a microvascular clamp on the left hilum for 2 h. Upon reperfusion mice received either vehicle or vehicle-containing mitochondria either by vascular delivery (Mito V) through the pulmonary artery or by aerosol delivery (Mito Neb) via the trachea (nebulization). Sham control mice underwent thoracotomy without hilar clamping and were ventilated for 2 h before returning to the cage. After 24 h recovery, lung mechanics were assessed and lungs were collected for analysis. Our results demonstrated that at 24 h of reperfusion, dynamic compliance and inspiratory capacity were significantly increased and resistance, tissue damping, elastance, and peak inspiratory pressure (Mito V only) were significantly decreased (P < 0.05) in Mito groups as compared with their respective vehicle groups. Neutrophil infiltration, interstitial edema, and apoptosis were significantly decreased (P < 0.05) in Mito groups as compared with vehicles. No significant differences in cytokines and chemokines between groups were shown. All lung mechanics results in Mito groups except peak inspiratory pressure in Mito Neb showed no significant differences (P > 0.05) as compared with Sham. These results conclude that mitochondrial transplantation by vascular delivery or nebulization improves lung mechanics and decreases lung tissue injury.


Asunto(s)
Pulmón/fisiopatología , Mitocondrias/fisiología , Daño por Reperfusión/fisiopatología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/fisiopatología , Animales , Apoptosis/fisiología , Líquido del Lavado Bronquioalveolar , Quimiocinas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Pulmón/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Infiltración Neutrófila/fisiología , Daño por Reperfusión/metabolismo , Pruebas de Función Respiratoria/métodos
4.
J Heart Lung Transplant ; 38(1): 92-99, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30391192

RESUMEN

BACKGROUND: Cold ischemia time (CIT) causes ischemia‒reperfusion injury to the mitochondria and detrimentally effects myocardial function and tissue viability. Mitochondrial transplantation replaces damaged mitochondria and enhances myocardial function and tissue viability. Herein we investigated the efficacy of mitochondrial transplantation in enhancing graft function and viability after prolonged CIT. METHODS: Heterotopic heart transplantation was performed in C57BL/6J mice. Upon heart harvesting from C57BL/6J donors, 0.5 ml of either mitochondria (1 × 108 in respiration buffer; mitochondria group) or respiration buffer (vehicle group) was delivered antegrade to the coronary arteries via injection to the coronary ostium. The hearts were excised and preserved for 29 ± 0.3 hours in cold saline (4°C). The hearts were then heterotopically transplanted. A second injection of either mitochondria (1 × 108) or respiration buffer (vehicle) was delivered antegrade to the coronary arteries 5 minutes after transplantation. Grafts were analyzed for 24 hours. Beating score, graft function, and tissue injury were measured. RESULTS: Beating score, calculated ejection fraction, and shortening fraction were significantly enhanced (p < 0.05), whereas necrosis and neutrophil infiltration were significantly decreased (p < 0.05) in the mitochondria group as compared with the vehicle group at 24 hours of reperfusion. Transmission electron microscopy showed the presence of contraction bands in vehicle but not in mitochondria grafts. CONCLUSIONS: Mitochondrial transplantation prolongs CIT to 29 hours in the murine heart transplantation model, significantly enhances graft function, and decreases graft tissue injury. Mitochondrial transplantation may provide a means to reduce graft failure and improve transplantation outcomes after prolonged CIT.


Asunto(s)
Isquemia Fría/efectos adversos , Trasplante de Corazón , Mitocondrias Cardíacas/trasplante , Preservación de Órganos/métodos , Animales , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Mitocondrias Cardíacas/ultraestructura
5.
JACC Basic Transl Sci ; 4(8): 871-888, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31909298

RESUMEN

Mitochondrial dysfunction is the determinant insult of ischemia-reperfusion injury. Autologous mitochondrial transplantation involves supplying one's healthy mitochondria to the ischemic region harboring damaged mitochondria. The authors used in vivo swine to show that mitochondrial transplantation in the heart by intracoronary delivery is safe, with specific distribution to the heart, and results in significant increase in coronary blood flow, which requires intact mitochondrial viability, adenosine triphosphate production, and, in part, the activation of vascular KIR channels. Intracoronary mitochondrial delivery after temporary regional ischemia significantly improved myocardial function, perfusion, and infarct size. The authors concluded that intracoronary delivery of mitochondria is safe and efficacious therapy for myocardial ischemia-reperfusion injury.

6.
EJNMMI Radiopharm Chem ; 1(1): 16, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29564392

RESUMEN

BACKGROUND: αVß3, αVß5 and α5ß1 integrins are known to be involved in carcinogenesis and are overexpressed in many types of tumours compared to healthy tissues; thereby they have been selected as promising therapeutic targets. Positron emission tomography (PET) is providing a unique non-invasive screening assay to discriminate which patient is more prone to benefit from antiangiogenic therapies, and extensive research has been carried out to develop a clinical radiopharmaceutical that binds specifically to integrin receptors. We recently reported the synthesis of a new 18F-labelled RGD peptide prepared by 2-cyanobenzothiazole (CBT)/1,2-aminothiol conjugation. This study aims at characterising the preclinical biologic properties of this new tumour-targeting ligand, named [18F]FPyPEGCBT-c(RGDfK).The in vitro binding properties of [18F]FPyPEGCBT-c(RGDfK) were analysed by standard binding assay in U-87 MG and SKOV-3 cancer models and its selectivity towards integrins by siRNA depletions. Its preclinical potential was studied in mice bearing subcutaneous tumours by ex vivo biodistribution studies and in vivo microPET/CT imaging. RESULTS: In vitro, FPyPEGCBT-c(RGDfK) efficiently bound RGD-recognising integrins as compared to a control c(RGDfV) peptide (IC50 = 30.8 × 10-7 M vs. 6.0 × 10-7 M). [18F]FPyPEGCBT-c(RGDfK) cell uptake was mediated by an active transport through binding to αV, ß3 and ß5 but not to ß1 subunits. In vivo, this new tracer demonstrated specific tumour uptake with %ID/g of 2.9 and 2.4 in U-87 MG and SKOV-3 tumours 1 h post injection. Tumour-to-muscle ratios of 4 were obtained 1 h after intravenous administration of the tracer allowing good visualisation of the tumours. However, unfavourable background accumulation and high hepatobiliary excretion were observed. CONCLUSION: [18F]FPyPEGCBT-c(RGDfK) specifically detects tumours expressing RGD-recognising integrin receptors in preclinical studies. Further optimisation of this radioligand may yield candidates with improved imaging properties and would warrant the further use of this efficient labelling technique for alternative targeting vectors.

7.
ACS Appl Mater Interfaces ; 7(23): 12923-9, 2015 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-26000709

RESUMEN

The radioisotope 18F is often considered the best choice for positron emission tomography (PET) owing to its desirable chemical and radiochemical properties. However, nucleophilic 18F-fluorination of large, water-soluble biomolecules, based on C-F bond formation, has traditionally been difficult. Thus, several aqueous fluorination approaches that offer significant versatility in radiopharmaceutical synthesis with sensitive targeting vectors have been developed. Furthermore, because 18F decays rapidly, production of these 18F-labeled compounds requires an automated process to reduce production time, reduce radiation exposure, and minimize losses due to the transfer of reagents during tracer synthesis. Herein, we report the use of magnetic droplet microfluidics (MDM) as a means to concentrate [18F]fluoride from the cyclotron target solution, followed by the synthesis of an 18F-labeled compound on a microfluidic platform. Using this method, we have demonstrated 18F preconcentration in a small-volume droplet through the use of anion exchanging magnetic particles. By using MDM, the preconcentration step took approximately 5 min, and the [18F]fluoride solution was preconcentrated by 15-fold. After the preconcentration step, an 18F-labeling reaction was performed on the MDM platform using the S-F bond formation in aqueous conditions to produce an arylsulfonyl [18F]fluoride compound which can be used as a prosthetic group to label PET targeting ligands. The high radiochemical purity of 95±1% was comparable to the 96% previously reported using a conventional method. In addition, when MDM was used, the total synthesis time was improved to 15 min with lower reagent volumes (50-60 µL) used.


Asunto(s)
Radioisótopos de Flúor/química , Nanopartículas de Magnetita/química , Ácidos Sulfínicos/química , Microfluídica , Tomografía de Emisión de Positrones
8.
Org Biomol Chem ; 13(12): 3667-76, 2015 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-25678209

RESUMEN

In a bid to find an efficient means to radiolabel biomolecules under mild conditions for PET imaging, a bifunctional (18)F prosthetic molecule has been developed. The compound, dubbed [(18)F]FPyPEGCBT, consists of a 2-substituted pyridine moiety for [(18)F]F(-) incorporation and a 2-cyanobenzothiazole moiety for coupling to terminal cysteine residues. The two functionalities are separated by a mini-PEG chain. [(18)F]FPyPEGCBT could be prepared from its corresponding 2-trimethylammonium triflate precursor (100 °C, 15 min, MeCN) in preparative yields of 11% ± 2 (decay corrected, n = 3) after HPLC purification. However, because the primary radiochemical impurity of the fluorination reaction will not interact with 1,2-aminothiol functionalities, the (18)F prosthetic could be prepared for bioconjugation reactions by way of partial purification on a molecularly imprinted polymer solid-phase extraction cartridge. [(18)F]FPyPEGCBT was used to (18)F-label a cyclo-(RGDfK) analogue which was modified with a terminal cysteine residue (TCEP·HCl, DIPEA, 30 min, 43 °C, DMF). Final decay-corrected yields of (18)F peptide were 7% ± 1 (n = 9) from end-of-bombardment. This novel integrin-imaging agent is currently being studied in murine models of cancer. We argue that [(18)F]FPyPEGCBT holds significant promise owing to its straightforward preparation, 'click'-like ease of use, and hydrophilic character. Indeed, the water-tolerant radio-bioconjugation protocol reported herein requires only one HPLC step for (18)F peptide purification and can be carried out remotely using a single automated synthesis unit over 124-132 min.


Asunto(s)
Benzotiazoles/química , Nitrilos/química , Compuestos de Sulfhidrilo/química , Benzotiazoles/síntesis química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Radioisótopos de Flúor , Nitrilos/síntesis química , Péptidos/síntesis química , Péptidos/química , Piridinas/química , Radiofármacos , Estándares de Referencia
9.
Chemistry ; 18(35): 11079-87, 2012 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-22807282

RESUMEN

Nucleophilic incorporation of [(18)F]F(-) under aqueous conditions holds several advantages in radiopharmaceutical development, especially with the advent of complex biological pharmacophores. Sulfonyl fluorides can be prepared in water at room temperature, yet they have not been assayed as a potential means to (18)F-labelled biomarkers for PET chemistry. We developed a general route to prepare bifunctional 4-formyl-, 3-formyl-, 4-maleimido- and 4-oxylalkynl-arylsulfonyl [(18)F]fluorides from their sulfonyl chloride analogues in 1:1 mixtures of acetonitrile, THF, or tBuOH and Cs[(18)F]F/Cs(2)CO(3(aq.)) in a reaction time of 15 min at room temperature. With the exception of 4-N-maleimide-benzenesulfonyl fluoride (3), pyridine could be used to simplify radiotracer purification by selectively degrading the precursor without significantly affecting observed yields. The addition of pyridine at the start of [(18)F]fluorination (1:1:0.8 tBuOH/Cs(2)CO(3(aq.))/pyridine) did not negatively affect yields of 3-formyl-2,4,6-trimethylbenzenesulfonyl [(18)F]fluoride (2) and dramatically improved the yields of 4-(prop-2-ynyloxy)benzenesulfonyl [(18)F]fluoride (4). The N-arylsulfonyl-4-dimethylaminopyridinium derivative of 4 (14) can be prepared and incorporates (18)F efficiently in solutions of 100 % aqueous Cs(2)CO(3) (10 mg mL(-1)). As proof-of-principle, [(18)F]2 was synthesised in a preparative fashion [88(±8) % decay corrected (n=6) from start-of-synthesis] and used to radioactively label an oxyamino-modified bombesin(6-14) analogue [35(±6) % decay corrected (n=4) from start-of-synthesis]. Total preparation time was 105-109 min from start-of-synthesis. Although the (18)F-peptide exhibited evidence of proteolytic defluorination and modification, our study is the first step in developing an aqueous, room temperature (18)F labelling strategy.


Asunto(s)
Radioisótopos de Flúor/química , Marcaje Isotópico/métodos , Radiofármacos/química , Ácidos Sulfínicos/química , Animales , Bombesina/química , Cromatografía Líquida de Alta Presión , Cromatografía en Capa Delgada , Radioisótopos de Flúor/aislamiento & purificación , Halogenación , Ratones , Estructura Molecular , Tomografía de Emisión de Positrones , Piridinas/química , Radiofármacos/aislamiento & purificación , Ácidos Sulfínicos/aislamiento & purificación , Agua
10.
Nucleosides Nucleotides Nucleic Acids ; 28(11): 1131-43, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20183579

RESUMEN

Functional imaging of gene expression in vivo with short-lived positron emitter (18)F remains an unrealized goal, in part because the long reaction times and challenging protocols typically required to label nucleic acid-based molecular probes with this radionuclide (t(1/2) = 109.8 minutes). To this end, we synthesized prosthetic group 2-[(18)F]fluoro-3-(hex-5-ynyloxy)pyridine ([(18)F]FPy5yne), used previously to label peptides, and coupled it to an oligodeoxyribonucleotide with (18)F by way of a Cu(I)-mediated azide/alkyne cycloaddition reaction. HPLC-purified [(18)F]FPy5yne was ligated to a 5'-azide-modified DNA sequence antisense to mdr1 mRNA in the presence of Cu(I)-stabilizing ligand tris(benzyltriazolylmethyl)amine and 2,6-lutidine. Non-decay corrected, collected yields of the (18)F-labeled oligonucleotide from end-of-bombardment were 3.9% +/- 0.5% (n = 3; 24.6% +/- 0.5% decay corrected). Shortest preparation time was 276 minutes from start of synthesis.


Asunto(s)
Radioisótopos de Flúor , Oligonucleótidos Antisentido/química , Marcaje Isotópico/métodos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA