Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Cells ; 13(13)2024 Jun 27.
Artículo en Inglés | MEDLINE | ID: mdl-38994966

RESUMEN

Fluorescence resonance energy transfer (FRET) biosensors have proven to be an indispensable tool in cell biology and, more specifically, in the study of G-protein signalling. The best method of measuring the activation status or FRET state of a biosensor is often fluorescence lifetime imaging microscopy (FLIM), as it does away with many disadvantages inherent to fluorescence intensity-based methods and is easily quantitated. Despite the significant potential, there is a lack of reliable FLIM-FRET biosensors, and the data processing and analysis workflows reported previously face reproducibility challenges. Here, we established a system in live primary mouse pancreatic ductal adenocarcinoma cells, where we can detect the activation of an mNeonGreen-Gαi3-mCherry-Gγ2 biosensor through the lysophosphatidic acid receptor (LPAR) with 2-photon time-correlated single-photon counting (TCSPC) FLIM. This combination gave a superior signal to the commonly used mTurquoise2-mVenus G-protein biosensor. This system has potential as a platform for drug screening, or to answer basic cell biology questions in the field of G-protein signalling.


Asunto(s)
Técnicas Biosensibles , Transferencia Resonante de Energía de Fluorescencia , Animales , Transferencia Resonante de Energía de Fluorescencia/métodos , Ratones , Técnicas Biosensibles/métodos , Proteínas de Unión al GTP/metabolismo , Humanos , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Línea Celular Tumoral , Receptores del Ácido Lisofosfatídico/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Carcinoma Ductal Pancreático/patología
2.
Curr Biol ; 34(15): 3564-3581.e6, 2024 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-39059394

RESUMEN

Hermansky-Pudlak syndrome (HPS) is an inherited disorder of intracellular vesicle trafficking affecting the function of lysosome-related organelles (LROs). At least 11 genes underlie the disease, encoding four protein complexes, of which biogenesis of lysosome-related organelles complex-2 (BLOC-2) is the last whose molecular action is unknown. We find that the unicellular eukaryote Dictyostelium unexpectedly contains a complete BLOC-2, comprising orthologs of the mammalian subunits HPS3, -5, and -6, and a fourth subunit, an ortholog of the Drosophila LRO-biogenesis gene, Claret. Lysosomes from Dictyostelium BLOC-2 mutants fail to mature, similar to LROs from HPS patients, but for all endolysosomes rather than a specialized subset. They also strongly resemble lysosomes from WASH mutants. Dictyostelium BLOC-2 localizes to the same compartments as WASH, and in BLOC-2 mutants, WASH is inefficiently recruited, accounting for their impaired lysosomal maturation. BLOC-2 is recruited to endolysosomes via its HPS3 subunit. Structural modeling suggests that all four subunits are proto-coatomer proteins, with important implications for BLOC-2's molecular function. The discovery of Dictyostelium BLOC-2 permits identification of orthologs throughout eukaryotes. BLOC-2 and lysosome-related organelles, therefore, pre-date the evolution of Metazoa and have broader and more conserved functions than previously thought.


Asunto(s)
Dictyostelium , Lisosomas , Proteínas Protozoarias , Dictyostelium/genética , Dictyostelium/metabolismo , Lisosomas/metabolismo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Animales , Evolución Molecular , Proteína Coatómero/genética , Proteína Coatómero/metabolismo , Síndrome de Hermanski-Pudlak/genética , Síndrome de Hermanski-Pudlak/metabolismo
3.
Curr Opin Cell Biol ; 81: 102169, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37075582

RESUMEN

Cells create their own steering cues, or modify cues from their outside, for a number of reasons. These include generating optimal, legible directional information; probing their environments for information to help decide an optimal route; symmetry breaking; generating new patterns and complexity; and bringing together collectives such as neutrophil swarms. Recent advances include more mechanisms of self-steering, in particular by using cell-generated mechanical cues, and gradients of respired oxygen. An increasing number of cell types are being found to use self-steering, in particular immune cells responding to chemokines and mesodermal cells during gastrulation. Finally, receptor modification has emerged as an important limit on the range of neutrophil swarming, allowing cells to monitor other areas as well as coming together. Self-steering is thus emerging as a dominant feature of cell motility.


Asunto(s)
Quimiotaxis , Neutrófilos , Movimiento Celular , Señales (Psicología)
4.
Curr Biol ; 33(9): 1704-1715.e3, 2023 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-37001521

RESUMEN

Negative chemotaxis, where eukaryotic cells migrate away from repellents, is important throughout biology, for example, in nervous system patterning and resolution of inflammation. However, the mechanisms by which molecules repel migrating cells are unknown. Here, we use predictive modeling and experiments with Dictyostelium cells to show that competition between different ligands that bind to the same receptor leads to effective chemorepulsion. 8-CPT-cAMP, widely described as a simple chemorepellent, is inactive on its own and only repels cells when it acts in combination with the attractant cAMP. If cells degrade either competing ligand, the pattern of migration becomes more complex; cells may be repelled in one part of a gradient but attracted elsewhere, leading to populations moving in different directions in the same assay or converging in an arbitrary place. More counterintuitively still, two chemicals that normally attract cells can become repellent when combined. Computational models of chemotaxis are now accurate enough to predict phenomena that have not been anticipated by experiments. We have used them to identify new mechanisms that drive reverse chemotaxis, which we have confirmed through experiments with real cells. These findings are important whenever multiple ligands compete for the same receptors.


Asunto(s)
Quimiotaxis , Dictyostelium , Quimiotaxis/fisiología , Factores Quimiotácticos/farmacología , Factores Quimiotácticos/metabolismo , Dictyostelium/metabolismo , Células Eucariotas/metabolismo
5.
Front Mol Biosci ; 9: 965921, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36106016

RESUMEN

Cell polarity and cell migration both depend on pseudopodia and lamellipodia formation. These are regulated by coordinated signaling acting through G-protein coupled receptors and kinases such as PKB/AKT and SGK, as well as the actin cytoskeletal machinery. Here we show that both Dictyostelium PKB and SGK kinases (encoded by pkbA and pkgB) are dispensable for chemotaxis towards folate. However, both are involved in the regulation of pseudopod formation and thus cell motility. Cells lacking pkbA and pkgB showed a substantial drop in cell speed. Actin polymerization is perturbed in pkbA- and reduced in pkgB- and pkbA-/pkgB- mutants. The Scar/WAVE complex, key catalyst of pseudopod formation, is recruited normally to the fronts of all mutant cells (pkbA-, pkgB- and pkbA-/pkgB-), but is unexpectedly unable to recruit the Arp2/3 complex in cells lacking SGK. Consequently, loss of SGK causes a near-complete loss of normal actin pseudopodia, though this can be rescued by overexpression of PKB. Hence both PKB and SGK are required for correct assembly of F-actin and recruitment of the Arp2/3 complex by the Scar/WAVE complex during pseudopodia formation.

6.
Trends Cell Biol ; 32(7): 585-596, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35351380

RESUMEN

Chemotaxis, where cell movement is steered by chemical gradients, is a widespread and essential way of organising cell behaviour. But where do the instructions come from - who makes gradients, and how are they controlled? We discuss the emerging concept that chemotactic cells often create attractant gradients at the same time as responding to them. This self-guidance is more robust, works across greater distances, and is more informative about the local environment than passive responses. Several mechanisms can establish autonomous gradients. Best known are self-generated gradients, in which the cells degrade a widespread attractant, but cells also produce repellents and 'relay' by secreting fresh attractant after stimulation. Understanding how cells make and interpret their own chemoattractant gradients is fundamental to understanding the spatial patterns seen in all organisms.


Asunto(s)
Factores Quimiotácticos , Quimiotaxis , Movimiento Celular , Factores Quimiotácticos/química , Factores Quimiotácticos/metabolismo , Factores Quimiotácticos/farmacología , Quimiotaxis/fisiología , Humanos
7.
Methods Mol Biol ; 2438: 467-482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35147958

RESUMEN

Chemotaxis-directional cell movement steered by chemical gradients-involved in many biological processes including embryonic morphogenesis and immune cell function. Eukaryotic cells, in response to external gradients of attractants, use conserved mechanisms to achieve chemotaxis by regulating the actin cytoskeleton at their fronts and myosin II at their rears. Dictyostelium discoideum, an amoeba that is widely used to study chemotaxis, uses chemotaxis to move up gradients of folate to identify and locate its bacterial prey. Similarly, when starved, Dictyostelium cells synthesize and secrete cyclic AMP (cAMP) while simultaneously expressing cAMP receptors. This allows them to chemotax toward their neighbors and aggregate together. The chemotactic behavior of cells can be studied using several techniques. One such, under-agarose chemotaxis, is a robust, easy, and inexpensive assay that allows direct quantification of chemotactic parameters such as speed and directionality. With the use of high-resolution imaging, for example confocal microscopy, detailed examination of the distribution of actin and membrane proteins in migrating wild type and mutant cells can be performed. In this chapter, we describe simple and optimized methods for studying folate and cAMP chemotaxis in Dictyostelium cells under agarose.


Asunto(s)
Dictyostelium , Ensayos de Migración Celular , Quimiotaxis/fisiología , AMP Cíclico/metabolismo , Dictyostelium/fisiología , Sefarosa
8.
Cells ; 10(12)2021 12 10.
Artículo en Inglés | MEDLINE | ID: mdl-34943993

RESUMEN

The lamellipodia and pseudopodia of migrating cells are produced and maintained by the Scar/WAVE complex. Thus, actin-based cell migration is largely controlled through regulation of Scar/WAVE. Here, we report that the Abi subunit-but not Scar-is phosphorylated in response to extracellular signalling in Dictyostelium cells. Like Scar, Abi is phosphorylated after the complex has been activated, implying that Abi phosphorylation modulates pseudopodia, rather than causing new ones to be made. Consistent with this, Scar complex mutants that cannot bind Rac are also not phosphorylated. Several environmental cues also affect Abi phosphorylation-cell-substrate adhesion promotes it and increased extracellular osmolarity diminishes it. Both unphosphorylatable and phosphomimetic Abi efficiently rescue the chemotaxis of Abi KO cells and pseudopodia formation, confirming that Abi phosphorylation is not required for activation or inactivation of the Scar/WAVE complex. However, pseudopodia and Scar patches in the cells with unphosphorylatable Abi protrude for longer, altering pseudopod dynamics and cell speed. Dictyostelium, in which Scar and Abi are both unphosphorylatable, can still form pseudopods, but migrate substantially faster. We conclude that extracellular signals and environmental responses modulate cell migration by tuning the behaviour of the Scar/WAVE complex after it has been activated.


Asunto(s)
Dictyostelium/metabolismo , Espacio Extracelular/metabolismo , Proteínas Protozoarias/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo , Adhesión Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Factores Quimiotácticos/farmacología , Dictyostelium/efectos de los fármacos , Mutación/genética , Presión Osmótica/efectos de los fármacos , Fosforilación/efectos de los fármacos , Proteínas Protozoarias/genética , Seudópodos/efectos de los fármacos , Seudópodos/metabolismo , Transducción de Señal/efectos de los fármacos
9.
Nat Cell Biol ; 23(11): 1111-1112, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34737441
10.
J Anat ; 239(6): 1241-1255, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34713444

RESUMEN

A century ago this year, Pío del Río-Hortega (1921) coined the term 'oligodendroglia' for the 'interfascicular glia' with very few processes, launching an extensive discovery effort on his new cell type. One hundred years later, we review his original contributions to our understanding of the system of cytoplasmic channels within myelin in the context of what we observe today using light and electron microscopy of genetically encoded fluorescent reporters and immunostaining. We use the term myelinic channel system to describe the cytoplasm-delimited spaces associated with myelin; being the paranodal loops, inner and outer tongues, cytoplasm-filled spaces through compact myelin and further complex motifs associated to the sheath. Using a central nervous system myelinating cell culture model that contains all major neural cell types and produces compact myelin, we find that td-tomato fluorescent protein delineates the myelinic channel system in a manner reminiscent of the drawings of adult white matter by Río-Hortega, despite that he questioned whether some cytoplasmic figures he observed represented artefact. Together, these data lead us to propose a slightly revised model of the 'unrolled' sheath. Further, we show that the myelinic channel system, while relatively stable, can undergo subtle dynamic shape changes over days. Importantly, we capture an under-appreciated complexity of the myelinic channel system in mature myelin sheaths.


Asunto(s)
Sistema Nervioso Central , Vaina de Mielina , Citoplasma , Microscopía Electrónica , Oligodendroglía
12.
J Cell Biol ; 220(7)2021 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-33978708

RESUMEN

Polarity is essential for diverse functions in many cell types. Establishing polarity requires targeting a network of specific signaling and cytoskeleton molecules to different subregions of the cell, yet the full complement of polarity regulators and how their activities are integrated over space and time to form morphologically and functionally distinct domains remain to be uncovered. Here, by using the model system Dictyostelium and exploiting the characteristic chemoattractant-stimulated translocation of polarly distributed molecules, we developed a proteomic screening approach, through which we identified a leucine-rich repeat domain-containing protein we named Leep1 as a novel polarity regulator. We combined imaging, biochemical, and phenotypic analyses to demonstrate that Leep1 localizes selectively at the leading edge of cells by binding to PIP3, where it modulates pseudopod and macropinocytic cup dynamics by negatively regulating the Scar/WAVE complex. The spatiotemporal coordination of PIP3 signaling, Leep1, and the Scar/WAVE complex provides a cellular mechanism for organizing protrusive structures at the leading edge.


Asunto(s)
Actinas/economía , Polaridad Celular/genética , Pinocitosis/genética , Proteínas Protozoarias/genética , Actinas/genética , Movimiento Celular/genética , Quimiotaxis/genética , Citoplasma/genética , Dictyostelium/genética , Seudópodos/genética , Transducción de Señal/genética
13.
Science ; 369(6507)2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32855311

RESUMEN

During development and metastasis, cells migrate large distances through complex environments. Migration is often guided by chemotaxis, but simple chemoattractant gradients between a source and sink cannot direct cells over such ranges. We describe how self-generated gradients, created by cells locally degrading attractant, allow single cells to navigate long, tortuous paths and make accurate choices between live channels and dead ends. This allows cells to solve complex mazes efficiently. Cells' accuracy at finding live channels was determined by attractant diffusivity, cell speed, and path complexity. Manipulating these parameters directed cells in mathematically predictable ways; specific combinations can even actively misdirect them. We propose that the length and complexity of many long-range migratory processes, including inflammation and germ cell migration, means that self-generated gradients are needed for successful navigation.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Células Eucariotas/fisiología , Dictyostelium , Humanos , Metástasis de la Neoplasia
14.
Invest Ophthalmol Vis Sci ; 61(10): 33, 2020 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-32797202

RESUMEN

Purpose: Human choroidal melanocytes become evident in the last trimester of development, but very little is known about them. To better understand normal and diseased choroidal melanocyte biology we examined their precursors, melanoblasts (MB), in mouse eyes during development, particularly their relation to the developing vasculature and immune cells. Methods: Naïve B6(Cg)-Tyrc-2J/J albino mice were used between embryonic (E) day 15.5 and postnatal (P) day 8, with adult controls. Whole eyes, posterior segments, or dissected choroidal wholemounts were stained with antibodies against tyrosinase-related protein 2, ionized calcium binding adaptor molecule-1 or isolectin B4, and examined by confocal microscopy. Immunoreactive cell numbers in the choroid were quantified with Imaris. One-way ANOVA with Tukey's post hoc test assessed statistical significance. Results: Small numbers of MB were present in the presumptive choroid at E15.5 and E18.5. The density significantly increased between E18.5 (381.4 ± 45.8 cells/mm2) and P0 (695.2 ± 87.1 cells/mm2; P = 0.032). In postnatal eyes MB increased in density and formed multiple layers beneath the choriocapillaris. MB in the periocular mesenchyme preceded the appearance of vascular structures at E15.5. Myeloid cells (Ionized calcium binding adaptor molecule-1-positive) were also present at high densities from this time, and attained adult-equivalent densities by P8 (556.4 ± 73.6 cells/mm2). Conclusions: We demonstrate that choroidal MB and myeloid cells are both present at very early stages of mouse eye development (E15.5). Although MB and vascularization seemed to be unlinked early in choroidal development, they were closely associated at later stages. MB did not migrate into the choroid in waves, nor did they have a consistent relationship with nerves.


Asunto(s)
Coroides/embriología , Melanocitos/citología , Animales , Recuento de Células , Coroides/irrigación sanguínea , Coroides/citología , Coroides/ultraestructura , Colorantes , Técnica del Anticuerpo Fluorescente , Melanocitos/fisiología , Ratones/embriología , Ratones Endogámicos C57BL/embriología , Ratones Mutantes , Microscopía Confocal , Neovascularización Fisiológica
15.
PLoS Biol ; 18(8): e3000774, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32745097

RESUMEN

The Scar/WAVE complex is the principal catalyst of pseudopod and lamellipod formation. Here we show that Scar/WAVE's proline-rich domain is polyphosphorylated after the complex is activated. Blocking Scar/WAVE activation stops phosphorylation in both Dictyostelium and mammalian cells, implying that phosphorylation modulates pseudopods after they have been formed, rather than controlling whether they are initiated. Unexpectedly, phosphorylation is not promoted by chemotactic signaling but is greatly stimulated by cell:substrate adhesion and diminished when cells deadhere. Phosphorylation-deficient or phosphomimetic Scar/WAVE mutants are both normally functional and rescue the phenotype of knockout cells, demonstrating that phosphorylation is dispensable for activation and actin regulation. However, pseudopods and patches of phosphorylation-deficient Scar/WAVE last substantially longer in mutants, altering the dynamics and size of pseudopods and lamellipods and thus changing migration speed. Scar/WAVE phosphorylation does not require ERK2 in Dictyostelium or mammalian cells. However, the MAPKKK homologue SepA contributes substantially-sepA mutants have less steady-state phosphorylation, which does not increase in response to adhesion. The mutants also behave similarly to cells expressing phosphorylation-deficient Scar, with longer-lived pseudopods and patches of Scar recruitment. We conclude that pseudopod engagement with substratum is more important than extracellular signals at regulating Scar/WAVE's activity and that phosphorylation acts as a pseudopod timer by promoting Scar/WAVE turnover.


Asunto(s)
Dictyostelium/genética , MAP Quinasa Quinasa Quinasa 3/genética , Proteínas Protozoarias/genética , Seudópodos/metabolismo , Familia de Proteínas del Síndrome de Wiskott-Aldrich/genética , Animales , Sistemas CRISPR-Cas , Adhesión Celular , Línea Celular Tumoral , Quimiotaxis/genética , Dictyostelium/metabolismo , Dictyostelium/ultraestructura , Edición Génica/métodos , Regulación de la Expresión Génica , MAP Quinasa Quinasa Quinasa 3/metabolismo , Melanocitos/metabolismo , Melanocitos/ultraestructura , Ratones , Proteína Quinasa 1 Activada por Mitógenos/genética , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Mutación , Células 3T3 NIH , Fenotipo , Fosforilación , Ploidias , Proteínas Protozoarias/metabolismo , Seudópodos/genética , Seudópodos/ultraestructura , Familia de Proteínas del Síndrome de Wiskott-Aldrich/metabolismo
16.
Front Cell Dev Biol ; 8: 133, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32195256

RESUMEN

Chemotaxis is a widespread mechanism that allows migrating cells to steer to where they are needed. Attractant gradients may be imposed by external sources, or self-generated, when cells create their own steep local gradients by breaking down a prevalent, broadly distributed attractant. Here we show that chemotaxis works far more robustly toward self-generated gradients. Cells can only respond efficiently to a restricted range of attractant concentrations; if attractants are too dilute, their gradients are too shallow for cells to sense, but if they are too high, all receptors become saturated and cells cannot perceive spatial differences. Self-generated gradients are robust because cells maintain the attractant at optimal concentrations. A wave can recruit varying numbers of steered cells, and cells can take time to break down attractant before starting to migrate. Self-generated gradients can therefore operate over a greater range of attractant concentrations, larger distances, and longer times than imposed gradients. The robustness is further enhanced at low cell numbers if attractants also act as mitogens, and at high attractant concentrations if the enzymes that break down attractants are themselves induced by constant attractant levels.

17.
J Vis Commun Med ; 43(1): 35-46, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31642358

RESUMEN

Cell biology and imaging technology have vastly improved over the past decades, enabling scientists to dissect the inner workings of a cell. In addition to technical limits on spatial and temporal resolution, which obscure the picture at the molecular level, the sheer density and complexity of information impede clear understanding. 3D molecular visualisation has therefore blossomed as a way to translate molecular data in a more tangible form. Whilst the molecular machinery involved in cell locomotion has been extensively studied, existing narratives describing how cells generate the forces that drive movement remain unclear. Polymerisation of a protein called actin is clearly essential. The general belief in the cell migration field is that actin polymerisation's main role is to push the leading edge of the cell forwards, while the rest of the cell follows passively. The cell migration & chemotaxis group at the CRUK Beatson Institute propose an alternative hypothesis, in which actin filaments constitute cables. Motor proteins pull on these cables, causing them to behave like the treads of a tank and drive cell movement. This article describes the development of a 3D animation that uses analogical reasoning to contrast the 'tank' hypothesis for cell locomotion with the current dogma.


Asunto(s)
Actinas/fisiología , Movimiento Celular/fisiología , Procesamiento de Imagen Asistido por Computador/métodos , Ilustración Médica , Modelos Biológicos , Biología Celular , Humanos
18.
Commun Integr Biol ; 14(1): 1-4, 2020 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-33447346

RESUMEN

The Scar/WAVE complex catalyzes the protrusion of pseudopods and lamellipods, and is therefore a principal regulator of cell migration. However, it is unclear how its activity is regulated, beyond a dependence on Rac. Phosphorylation of the proline-rich region, by kinases such as Erk2, has been suggested as an upstream activator. We have recently reported that phosphorylation is not required for complex activation. Rather, it occurs after Scar/WAVE has been activated, and acts as a modulator. Neither chemoattractant signaling nor Erk2 affects the amount of phosphorylation, though in Dictyostelium it is promoted by cell-substrate adhesion. We now report that cell-substrate adhesion also promotes Scar/WAVE2 phosphorylation in mammalian cells, suggesting that the process is evolutionarily conserved.

19.
Curr Biol ; 29(24): 4169-4182.e4, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31786060

RESUMEN

Efficient motility requires polarized cells, with pseudopods at the front and a retracting rear. Polarization is maintained by restricting the pseudopod catalyst, active Rac, to the front. Here, we show that the actin nucleation-promoting factor Wiskott-Aldrich syndrome protein (WASP) contributes to maintenance of front-rear polarity by controlling localization and cellular levels of active Rac. Dictyostelium cells lacking WASP inappropriately activate Rac at the rear, which affects their polarity and speed. WASP's Cdc42 and Rac interacting binding ("CRIB") motif has been thought to be essential for its activation. However, we show that the CRIB motif's biological role is unexpectedly complex. WASP CRIB mutants are no longer able to restrict Rac activity to the front, and cannot generate new pseudopods when SCAR/WAVE is absent. Overall levels of Rac activity also increase when WASP is unable to bind to Rac. However, WASP without a functional CRIB domain localizes normally at clathrin pits during endocytosis, and activates Arp2/3 complex. Similarly, chemical inhibition of Rac does not affect WASP localization or activation at sites of endocytosis. Thus, the interaction between small GTPases and WASP is more complex than previously thought-Rac regulates a subset of WASP functions, but WASP reciprocally restricts active Rac through its CRIB motif.


Asunto(s)
Polaridad Celular/fisiología , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/metabolismo , Complejo 2-3 Proteico Relacionado con la Actina/metabolismo , Actinas/metabolismo , Secuencia de Aminoácidos , Animales , Movimiento Celular/fisiología , Clatrina/metabolismo , Dictyostelium/metabolismo , Endocitosis , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Seudópodos/metabolismo , Proteína del Síndrome de Wiskott-Aldrich/fisiología
20.
Dev Cell ; 51(4): 431-445.e7, 2019 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-31668663

RESUMEN

Pancreatic ductal adenocarcinoma is one of the most invasive and metastatic cancers and has a dismal 5-year survival rate. We show that N-WASP drives pancreatic cancer metastasis, with roles in both chemotaxis and matrix remodeling. lysophosphatidic acid, a signaling lipid abundant in blood and ascites fluid, is both a mitogen and chemoattractant for cancer cells. Pancreatic cancer cells break lysophosphatidic acid down as they respond to it, setting up a self-generated gradient driving tumor egress. N-WASP-depleted cells do not recognize lysophosphatidic acid gradients, leading to altered RhoA activation, decreased contractility and traction forces, and reduced metastasis. We describe a signaling loop whereby N-WASP and the endocytic adapter SNX18 promote lysophosphatidic acid-induced RhoA-mediated contractility and force generation by controlling lysophosphatidic acid receptor recycling and preventing degradation. This chemotactic loop drives collagen remodeling, tumor invasion, and metastasis and could be an important target against pancreatic cancer spread.


Asunto(s)
Lisofosfolípidos/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Receptores del Ácido Lisofosfatídico/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/metabolismo , Animales , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Movimiento Celular/fisiología , Quimiotaxis , Femenino , Humanos , Masculino , Ratones , Ratones Desnudos , Invasividad Neoplásica , Metástasis de la Neoplasia , Transporte de Proteínas , Ratas , Receptores del Ácido Lisofosfatídico/genética , Receptores del Ácido Lisofosfatídico/aislamiento & purificación , Transducción de Señal , Nexinas de Clasificación/metabolismo , Proteína Neuronal del Síndrome de Wiskott-Aldrich/genética , Proteína de Unión al GTP rhoA/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...