Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Microbiol Resour Announc ; 13(6): e0019924, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38682917

RESUMEN

Streptomycin thallous acetate actidione medium is typically used to isolate Brochothrix thermosphacta bacteria from food. Using this medium, three bacterial strains were isolated from the environment. Genomic sequences demonstrated that these bacteria are of the genera Lysinibacillus and Paenibacillus and are of biotechnological interest.

2.
iScience ; 27(3): 109176, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38433891

RESUMEN

Brown macroalgae are colonized by diverse microorganisms influencing the physiology of their host. However, cell-cell interactions within the surface microbiome (epimicrobiome) are largely unexplored, despite the significance of specific chemical mediators in maintaining host-microbiome homeostasis. In this study, by combining liquid chromatography coupled to mass spectrometry (LC-MS) analysis and bioassays, we demonstrated that the widely diverse fungal epimicrobiota of the brown alga Saccharina latissima can affect quorum sensing (QS), a type of cell-cell interaction, as well as bacterial biofilm formation. We also showed the ability of the bacterial epimicrobiota to form and inhibit biofilm growth, as well as to activate or inhibit QS pathways. Overall, we demonstrate that QS and anti-QS compounds produced by the epimicrobiota are key metabolites in these brown algal epimicrobiota communities and highlight the importance of exploring this epimicrobiome for the discovery of new bioactive compounds, including potentially anti-QS molecules with antifouling properties.

3.
Front Plant Sci ; 13: 814386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35463414

RESUMEN

Phytoplankton-bacteria interactions rule over carbon fixation in the sunlit ocean, yet only a handful of phytoplanktonic-bacteria interactions have been experimentally characterized. In this study, we investigated the effect of three bacterial strains isolated from a long-term microcosm experiment with one Ostreococcus strain (Chlorophyta, Mamiellophyceae). We provided evidence that two Roseovarius strains (Alphaproteobacteria) had a beneficial effect on the long-term survival of the microalgae whereas one Winogradskyella strain (Flavobacteriia) led to the collapse of the microalga culture. Co-cultivation of the beneficial and the antagonistic strains also led to the loss of the microalga cells. Metagenomic analysis of the microcosm is consistent with vitamin B12 synthesis by the Roseovarius strains and unveiled two additional species affiliated to Balneola (Balneolia) and Muricauda (Flavobacteriia), which represent less than 4% of the reads, whereas Roseovarius and Winogradskyella recruit 57 and 39% of the reads, respectively. These results suggest that the low-frequency bacterial species may antagonize the algicidal effect of Winogradskyella in the microbiome of Ostreococcus tauri and thus stabilize the microalga persistence in the microcosm. Altogether, these results open novel perspectives into long-term stability of phytoplankton cultures.

5.
J Proteome Res ; 21(3): 635-642, 2022 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-35102742

RESUMEN

N-Acyl-l-homoserine lactones (AHLs) are a large family of signaling molecules in "quorum sensing" communication. This mechanism is present in a number of bacterial physiological phenomena, including pathogenic phenomena. In this study, we described a simple and accessible way to detect, annotate, and quantify these compounds from bacterial culture media. Analytical standards and ethyl acetate bacterial extracts containing AHLs were analyzed by an ultra-high-performance liquid chromatography system coupled to a mass spectrometer using a nontargeted FullMS data-dependent MS2 method. The results were processed in MZmine2 and then analyzed by a Feature-Based Molecular Networking (FBMN) workflow in the Global Natural Products Social Networking (GNPS) platform for the discovery and annotation of known and unknown AHLs. Our group analyzed 31 AHL standards and included the MS2 spectra in the spectral library of the GNPS platform. We also provide the 31 standard AHL spectrum list for inclusion in molecular networking analyses. FBMN analysis annotated 30 out of 31 standards correctly. Then, as an example, a set of five bacterial extracts was prepared for AHL annotation. Following the method described in this Article, 5 known and 11 unknown AHLs were properly annotated using the FBMN-based molecular network approach. This study offers the possibility for the automatic annotation of known AHLs and the search for nonreferenced AHLs in bacterial extracts in a somewhat straightforward approach even without acquiring analytical standards. The method also provides relative quantification information.


Asunto(s)
Acil-Butirolactonas , Espectrometría de Masas en Tándem , 4-Butirolactona/análisis , Acil-Butirolactonas/química , Cromatografía Liquida/métodos , Homoserina , Percepción de Quorum , Espectrometría de Masas en Tándem/métodos
6.
J Appl Microbiol ; 132(4): 2870-2882, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-34919313

RESUMEN

AIMS: The current study aimed to evaluate the occurrence of actinomycetes in the Coast of Bejaia City using selective isolation, as well as their bioactivity and phylogenitic diversity. METHODS AND RESULTS: Different selective media and methods were used, leading to the isolation of 103 actinomycete strains. The number of strains was influenced by isolation procedures and their interactions based on a three-way ANOVA and a post hoc Tukey test, which revealed that using M2 medium, dilution of samples followed by moderate heat treatment, and sampling at 10-20 m yielded the highest numbers of actinomycetes. The isolates were screened for their antimicrobial activity against human pathogenic microorganisms using agar and well diffusion methods. Of all the isolates, ten displayed activity against at least one Gram-positive bacterium, of which P21 showed the highest activity against Staphylococcus aureus, Methicillin-resistant S. aureus and Bacillus subtilis, with a diameter of 32, 28 and 25 mm respectively. Subsequently, active isolates were assigned to Streptomyces spp. and Nocardiopsis spp. based on 16S rRNA gene sequencing, including a putative new Streptomyces species (S3). The phenotypic characteristics of the P21 strain were determined, and interesting enzymatic capacities were shown. CONCLUSION: The recovery of actinomycetes along the Coast of Bejaia City was influenced by the isolation procedure. Ten strains displayed interesting antibacterial activity against Gram-positive bacteria, of which the P21 strain was selected as the most active strain. SIGNIFICANCE AND IMPACT OF THE STUDY: This work provides a new insight into the occurrence of actinobacteria in the Coast of Bejaia. It suggests also that polluted environments such as Bejaia Bay could provide access to interesting actinomycetes as sources of antibiotic leads.


Asunto(s)
Actinobacteria , Antiinfecciosos , Staphylococcus aureus Resistente a Meticilina , Streptomyces , Actinomyces/genética , Argelia , Antibacterianos/farmacología , Humanos , Staphylococcus aureus Resistente a Meticilina/genética , Filogenia , ARN Ribosómico 16S/genética , Streptomyces/genética
7.
Microorganisms ; 9(8)2021 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-34442856

RESUMEN

Although interactions between microalgae and bacteria are observed in both natural environment and the laboratory, the modalities of coexistence of bacteria inside microalgae phycospheres in laboratory cultures are mostly unknown. Here, we focused on well-controlled cultures of the model green picoalga Ostreococcus tauri and the most abundant member of its phycosphere, Marinobacter algicola. The prevalence of M. algicola in O. tauri cultures raises questions about how this bacterium maintains itself under laboratory conditions in the microalga culture. The results showed that M. algicola did not promote O. tauri growth in the absence of vitamin B12 while M. algicola depended on O. tauri to grow in synthetic medium, most likely to obtain organic carbon sources provided by the microalgae. M. algicola grew on a range of lipids, including triacylglycerols that are known to be produced by O. tauri in culture during abiotic stress. Genomic screening revealed the absence of genes of two particular modes of quorum-sensing in Marinobacter genomes which refutes the idea that these bacterial communication systems operate in this genus. To date, the 'opportunistic' behaviour of M. algicola in the laboratory is limited to several phytoplanktonic species including Chlorophyta such as O. tauri. This would indicate a preferential occurrence of M. algicola in association with these specific microalgae under optimum laboratory conditions.

8.
FEMS Microbiol Lett ; 368(4)2021 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-33605980

RESUMEN

Genomic islands (Aeromonas salmonicida genomic islands, AsaGEIs) are found worldwide in many isolates of Aeromonas salmonicida subsp. salmonicida, a fish pathogen. To date, five variants of AsaGEI (1a, 1b, 2a, 2b and 2c) have been described. Here, we investigate a sixth AsaGEI, which was identified in France between 2016 and 2019 in 20 A. salmonicida subsp. salmonicida isolates recovered from sick salmon all at the same location. This new AsaGEI shares the same insertion site in the chromosome as the other AsaGEI2s as they all have a homologous integrase gene. This new AsaGEI was thus named AsaGEI2d, and has five unique genes compared to the other AsaGEIs. The isolates carrying AsaGEI2d also bear the plasmid pAsa7, which was initially found in an isolate from Switzerland. This plasmid provides resistance to chloramphenicol thanks to a cat gene. This study reveals more about the diversity of the AsaGEIs.


Asunto(s)
Aeromonas/genética , Islas Genómicas , Plásmidos , Aeromonas/clasificación , Aeromonas/efectos de los fármacos , Aeromonas/aislamiento & purificación , Animales , Antibacterianos/farmacología , Resistencia al Cloranfenicol/genética , Enfermedades de los Peces/microbiología , Francia , Genoma Bacteriano/genética , Islas Genómicas/genética , Integrasas/genética , Pruebas de Sensibilidad Microbiana , Sistemas de Lectura Abierta , Filogenia , Plásmidos/genética , Salmón
9.
Philos Trans A Math Phys Eng Sci ; 378(2181): 20190356, 2020 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-32862822

RESUMEN

Global warming affects primary producers in the Arctic, with potential consequences for the bacterial community composition through the consumption of microalgae-derived dissolved organic matter (DOM). To determine the degree of specificity in the use of an exudate by bacterial taxa, we used simple microalgae-bacteria model systems. We isolated 92 bacterial strains from the sea ice bottom and the water column in spring-summer in the Baffin Bay (Arctic Ocean). The isolates were grouped into 42 species belonging to Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes. Forty strains were tested for their capacity to grow on the exudate from two Arctic diatoms. Most of the strains tested (78%) were able to grow on the exudate from the pelagic diatom Chaetoceros neogracilis, and 33% were able to use the exudate from the sea ice diatom Fragilariopsis cylindrus. 17.5% of the strains were not able to grow with any exudate, while 27.5% of the strains were able to use both types of exudates. All strains belonging to Flavobacteriia (n = 10) were able to use the DOM provided by C. neogracilis, and this exudate sustained a growth capacity of up to 100 times higher than diluted Marine Broth medium, of two Pseudomonas sp. strains and one Sulfitobacter strain. The variable bioavailability of exudates to bacterial strains highlights the potential role of microalgae in shaping the bacterial community composition. This article is part of the theme issue 'The changing Arctic Ocean: consequences for biological communities, biogeochemical processes and ecosystem functioning'.


Asunto(s)
Bacterias/aislamiento & purificación , Bacterias/metabolismo , Diatomeas/metabolismo , Agua de Mar/química , Agua de Mar/microbiología , Regiones Árticas , Bacterias/clasificación , Biodegradación Ambiental , Biodiversidad , Diatomeas/crecimiento & desarrollo , Diatomeas/aislamiento & purificación , Ecosistema , Calentamiento Global , Cubierta de Hielo/química , Cubierta de Hielo/microbiología , Microalgas/crecimiento & desarrollo , Microalgas/aislamiento & purificación , Microalgas/metabolismo , Modelos Biológicos , Océanos y Mares , Compuestos Orgánicos/metabolismo , Filogenia , Fitoplancton/crecimiento & desarrollo , Fitoplancton/aislamiento & purificación , Fitoplancton/metabolismo
10.
Syst Appl Microbiol ; 43(1): 126018, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31733924

RESUMEN

Strain MOLA 401T was isolated from marine waters in the southwest lagoon of New Caledonia and was shown previously to produce an unusual diversity of quorum sensing signaling molecules. This strain was Gram-negative, formed non-motile cocci and colonies were caramel. Optimum growth conditions were 30°C, pH 8 and 3% NaCl (w/v). Based on 16S rRNA gene sequence analysis, this strain was found to be closely related to Pseudomaribius aestuariivivens NBRC 113039T (96.9% of similarity), Maribius pontilimi DSM 104950T (96.4% of similarity) and Palleronia marisminoris LMG 22959T (96.3% of similarity), belonging to the Roseobacter group within the family Rhodobacteraceae. As its closest relatives, strain MOLA 401T is able to form a biofilm on polystyrene, supporting the view of Roseobacter group strains as prolific surface colonizers. An in-depth genomic study allowed us to affiliate strain MOLA 401T as a new species of genus Palleronia and to reaffiliate some of its closest relatives in this genus. Consequently, we describe strain MOLA 401T (DSM 106827T=CIP 111607T=BBCC 401T) for which we propose the name Palleronia rufa sp. nov. We also propose to emend the description of the genus Palleronia and to reclassify Maribius and Hwanghaeicola species as Palleronia species.


Asunto(s)
Acil-Butirolactonas/metabolismo , Biopelículas/crecimiento & desarrollo , Rhodobacteraceae/clasificación , Rhodobacteraceae/fisiología , Proteínas Bacterianas/genética , ADN Bacteriano/genética , Genes Esenciales/genética , Genoma Bacteriano/genética , Nueva Caledonia , Filogenia , Percepción de Quorum , ARN Ribosómico 16S/genética , Rhodobacteraceae/química , Rhodobacteraceae/citología , Roseobacter/química , Roseobacter/clasificación , Roseobacter/citología , Roseobacter/fisiología , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie
11.
Front Microbiol ; 10: 1850, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31555220

RESUMEN

Crustose coralline red algae (CCA) are important components of marine ecosystems thriving from tropical waters and up to the poles. They fulfill important ecological services including framework building and induction of larval settlement. Like other marine organisms, CCAs have not been spared by the increase in marine disease outbreaks. The white-band syndrome has been recently observed in corallines from the Mediterranean Sea indicating that the disease threat has extended from tropical to temperate waters. Here, we examined the microbiome and the pathobiome of healthy and diseased Neogoniolithon brassica-florida coralline algae in the Mediterranean Sea by combining culture-dependent and -independent approaches. The coralline white-band syndrome was associated with a distinct pathobiome compared to healthy tissues and showed similarities with the white-band syndrome described in the Caribbean Sea. A sequence related to the genus Hoeflea, order Rhizobiales, characterized the white-band disease pathobiome described by amplicon sequencing. No representative of this genus was isolated by culture. We, however, successfully isolated an abundant member of the healthy CCA microbiome, an Alphaproteobateria of the family Rhodobacteraceae. In conclusion, we did not identify a potential causative agent of the disease, but through the complementarity of culture dependent and independent approaches we characterized the healthy microbiome of the coralline and the possible opportunistic bacteria colonizing diseased tissues.

12.
Front Microbiol ; 9: 3125, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30622520

RESUMEN

Epibacterium mobile BBCC367 is a marine bacterium that is common in coastal areas. It belongs to the Roseobacter clade, a widespread group in pelagic marine ecosystems. Species of the Roseobacter clade are regularly used as models to understand the evolution and physiological adaptability of generalist bacteria. E. mobile BBCC367 comprises two chromosomes and two plasmids. We used gel-free shotgun proteomics to assess its protein expression under 16 different conditions, including stress factors such as elevated temperature, nutrient limitation, high metal concentration, and UVB exposure. Comparison of the different conditions allowed us not only to retrieve almost 70% of the predicted proteins, but also to define three main protein assemblages: 584 essential core proteins, 2,144 facultative accessory proteins and 355 specific unique proteins. While the core proteome mainly exhibited proteins involved in essential functions to sustain life such as DNA, amino acids, carbohydrates, cofactors, vitamins and lipids metabolisms, the accessory and unique proteomes revealed a more specific adaptation with the expression of stress-related proteins, such as DNA repair proteins (accessory proteome), transcription regulators and a significant predominance of transporters (unique proteome). Our study provides insights into how E. mobile BBCC367 adapts to environmental changes and copes with diverse stresses.

13.
Phytochemistry ; 145: 57-67, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29091816

RESUMEN

Alphaproteobacterium strain MOLA1416, related to Mycoplana ramosa DSM 7292 and Chelativorans intermedius CC-MHSW-5 (93.6% 16S rRNA sequence identity) was isolated from the marine lichen, Lichina pygmaea and its chemical composition was characterized by a metabolomic network analysis using LC-MS/MS data. Twenty-five putative different compounds were revealed using a dereplication workflow based on MS/MS signatures available through GNPS (https://gnps.ucsd.edu/). In total, ten chemical families were highlighted including isocoumarins, macrolactones, erythrinan alkaloids, prodiginines, isoflavones, cyclohexane-diones, sterols, diketopiperazines, amino-acids and most likely glucocorticoids. Among those compounds, two known metabolites (13 and 26) were isolated and structurally identified and metabolite 26 showed a high cytotoxic activity against B16 melanoma cell lines with an IC50 0.6 ± 0.07 µg/mL.


Asunto(s)
Alphaproteobacteria/química , Líquenes/microbiología , Melanoma Experimental/tratamiento farmacológico , Oligopéptidos/química , Prodigiosina/análogos & derivados , Alphaproteobacteria/aislamiento & purificación , Alphaproteobacteria/metabolismo , Animales , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Líquenes/metabolismo , Melanoma Experimental/patología , Ratones , Estructura Molecular , Oligopéptidos/aislamiento & purificación , Prodigiosina/química , Prodigiosina/aislamiento & purificación , Prodigiosina/farmacología , Relación Estructura-Actividad
14.
Int J Syst Evol Microbiol ; 67(9): 3246-3250, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28829014

RESUMEN

A Gram-stain-negative, aerobic, yellow-pigmented, straight rod-shaped bacterium, strain MOLA117T, was isolated from a coastal water sample from the north-western Mediterranean Sea, near Banyuls-sur-Mer, France. On the basis of phylogenetic analysis of the 16S rRNA gene sequence, strain MOLA117T was placed within the family Flavobacteriaceae, but showed less than 93 % 16S rRNA gene sequence similarity to other recognized species within the family. The most closely related genera included Arenibacter, Cellulophaga, Maribacter and Zobellia. The only isoprenoid quinone was menaquinone MK-6 and the predominant fatty acid was iso-C17 : 0 3-OH, representing over 33 % of the total fatty acids. The DNA G+C content was 36.9 mol%. Strain MOLA117T required NaCl for growth, and did not exhibit gliding motility or produce flexirubin. Based on the phenotypic and phylogenetic data, strain MOLA117T should be considered to represent a novel species of a new genus, for which the name Saonia flava gen. nov., sp. nov. is proposed. The type strain of Saonia flava is MOLA117T (=CIP 110873T=DSM 29762T).


Asunto(s)
Flavobacteriaceae/clasificación , Filogenia , Agua de Mar/microbiología , Técnicas de Tipificación Bacteriana , Composición de Base , ADN Bacteriano/genética , Ácidos Grasos/química , Flavobacteriaceae/genética , Flavobacteriaceae/aislamiento & purificación , Francia , Mar Mediterráneo , Mar del Norte , Pigmentación , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Sensors (Basel) ; 17(4)2017 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-28425948

RESUMEN

Since the discovery of quorum sensing (QS) in the 1970s, many studies have demonstrated that Vibrio species coordinate activities such as biofilm formation, virulence, pathogenesis, and bioluminescence, through a large group of molecules called N-acyl homoserine lactones (AHLs). However, despite the extensive knowledge on the involved molecules and the biological processes controlled by QS in a few selected Vibrio strains, less is known about the overall diversity of AHLs produced by a broader range of environmental strains. To investigate the prevalence of QS capability of Vibrio environmental strains we analyzed 87 Vibrio spp. strains from the Banyuls Bacterial Culture Collection (WDCM911) for their ability to produce AHLs. This screening was based on three biosensors, which cover a large spectrum of AHLs, and revealed that only 9% of the screened isolates produced AHLs in the defined experimental conditions. Among these AHL-producing strains, Vibrio tasmaniensis LGP32 is a well-known pathogen of bivalves. We further analyzed the diversity of AHLs produced by this strain using a sensitive bioguided UHPLC-HRMS/MS approach (Ultra-High-Performance Liquid Chromatography followed by High-Resolution tandem Mass Spectrometry) and we identified C10-HSL, OH-C12-HSL, oxo-C12-HSL and C14:1-HSL as QS molecules. This is the first report that documents the production of AHL by Vibrio tasmaniensis LGP32.


Asunto(s)
Vibrio , 4-Butirolactona , Acil-Butirolactonas , Técnicas Biosensibles , Cromatografía Líquida de Alta Presión , Homoserina , Lactonas , Percepción de Quorum
16.
PLoS One ; 12(1): e0168879, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045976

RESUMEN

This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6-14.5 g L-1 eq. CO32-, i.e. 160-220 mM compare to around 2-2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 µg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was found responsible for almost all photosynthetic primary production.


Asunto(s)
Biodiversidad , Cianobacterias , Lagos/microbiología , Microbiología del Agua , Biomasa , Carbono/química , Clorofila/metabolismo , Clorofila A , Análisis por Conglomerados , Comoras , Geografía , Concentración de Iones de Hidrógeno , Islas , Modelos Estadísticos , Nitrógeno/química , Oxígeno/análisis , Oxígeno/química , Fotosíntesis , Fitoplancton , Análisis de Componente Principal , ARN Ribosómico 16S/metabolismo , Temperatura
17.
Sci Rep ; 5: 15839, 2015 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-26514347

RESUMEN

Cultivable Actinobacteria are the largest source of microbially derived bioactive molecules. The high demand for novel antibiotics highlights the need for exploring novel sources of these bacteria. Microbial symbioses with sessile macro-organisms, known to contain bioactive compounds likely of bacterial origin, represent an interesting and underexplored source of Actinobacteria. We studied the diversity and potential for bioactive-metabolite production of Actinobacteria associated with two marine lichens (Lichina confinis and L. pygmaea; from intertidal and subtidal zones) and one littoral lichen (Roccella fuciformis; from supratidal zone) from the Brittany coast (France), as well as the terrestrial lichen Collema auriforme (from a riparian zone, Austria). A total of 247 bacterial strains were isolated using two selective media. Isolates were identified and clustered into 101 OTUs (98% identity) including 51 actinobacterial OTUs. The actinobacterial families observed were: Brevibacteriaceae, Cellulomonadaceae, Gordoniaceae, Micrococcaceae, Mycobacteriaceae, Nocardioidaceae, Promicromonosporaceae, Pseudonocardiaceae, Sanguibacteraceae and Streptomycetaceae. Interestingly, the diversity was most influenced by the selective media rather than lichen species or the level of lichen thallus association. The potential for bioactive-metabolite biosynthesis of the isolates was confirmed by screening genes coding for polyketide synthases types I and II. These results show that littoral lichens are a source of diverse potentially bioactive Actinobacteria.


Asunto(s)
Actinobacteria/genética , Líquenes/genética , Actinobacteria/clasificación , Actinobacteria/aislamiento & purificación , Biodiversidad , Análisis por Conglomerados , Líquenes/clasificación , Líquenes/aislamiento & purificación , Filogenia , Sintasas Poliquetidas/genética , Sintasas Poliquetidas/metabolismo , Reacción en Cadena de la Polimerasa , ARN Ribosómico 16S/genética , ARN Ribosómico 16S/metabolismo , Análisis de Secuencia de ADN , Microbiología del Suelo
18.
Environ Sci Pollut Res Int ; 22(18): 13638-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25408076

RESUMEN

Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed for 22 days in microcosms (8 l). The high bioavailability of this material led to (i) a rapid mineralization of the DOC and dissolved organic nitrogen from the jellyfish and (ii) the accumulation of high concentrations of ammonium and orthophosphate in the water column. DOM from jellyfish greatly stimulated heterotrophic prokaryotic production and respiration rates during the first 2 days; then, these activities showed a continuous decay until reaching those measured in the control microcosms (lagoon water only) at the end of the experiment. Bacterial growth efficiency remained below 20%, indicating that most of the DOM was respired and a minor part was channeled to biomass production. Changes in bacterial diversity were assessed by tag pyrosequencing of partial bacterial 16S rRNA genes, DNA fingerprints, and a cultivation approach. While bacterial diversity in control microcosms showed little changes during the experiment, the addition of DOM from the jellyfish induced a rapid growth of Pseudoalteromonas and Vibrio species that were isolated. After 9 days, the bacterial community was dominated by Bacteroidetes, which appeared more adapted to metabolize high-molecular-weight DOM. At the end of the experiment, the bacterial community shifted toward a higher proportion of Alphaproteobacteria. Resilience of the bacterial community after the addition of DOM from the jellyfish was higher for metabolic functions than diversity, suggesting that jellyfish blooms can induce durable changes in the bacterial community structure in coastal lagoons.


Asunto(s)
Microbiología del Agua , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/metabolismo , Animales , Ecosistema , Mar Mediterráneo , Nitratos/química , Nitrógeno/metabolismo , Filogenia , Pseudoalteromonas/genética , Pseudoalteromonas/crecimiento & desarrollo , Pseudoalteromonas/metabolismo , ARN Ribosómico 16S/genética , Escifozoos/química , Escifozoos/microbiología , Agua de Mar/microbiología , Soluciones , Vibrio/genética , Vibrio/crecimiento & desarrollo , Vibrio/metabolismo
19.
Genome Announc ; 2(5)2014 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-25301648

RESUMEN

Ruegeria halocynthiae MOLA R1/13b is an alphaproteobacterium isolated from the Mediterranean sea sponge Crambe crambe. We report here the genome sequence and its annotation, revealing the presence of quorum-sensing genes. This is the first report of the full genome of a Ruegeria halocynthiae strain.

20.
Genome Announc ; 2(5)2014 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-25278539

RESUMEN

Maribius sp. strain MOLA401 is an alphaproteobacterium isolated from a coral reef lagoon located in New Caledonia, France. We report the genome sequence and its annotation which, interestingly, reveals the presence of genes involved in quorum sensing. This is the first report of a full genome within the genus Maribius.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...