Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Comput Methods Programs Biomed ; 247: 108064, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38382308

RESUMEN

BACKGROUND AND OBJECTIVE: The movement of the respiratory walls has a significant impact on airflow through the respiratory tract. The majority of computational fluid dynamics (CFD) studies assume a static geometry which may not provide a realistic flow field. Furthermore, many studies use Reynolds Averaged Navier-Stokes (RANS) turbulence models that do not resolve turbulence structure. Combining the application of advanced scale-resolving turbulence models with moving respiratory walls using CFD will provide detailed insights into respiratory flow structures. METHODS: This study simulated a complete breathing cycle involving inhalation and exhalation in a nasal cavity to trachea geometry that incorporated moving glottis walls. A second breathing cycle was simulated with static glottis walls for comparison. A recently developed hybrid RANS-LES turbulence model, the Stress-Blended Eddy Simulation (SBES), was incorporated to resolve turbulent flow structures in fine detail for both transient simulations. Transient results were compared with steady-state RANS simulations for the same respiratory geometry. RESULTS: Glottis motion caused substantial effects on flow structure through the complete breathing cycle. Significant flow structure and velocity variations were observed due to glottal motion, primarily in the larynx and trachea. Resolved turbulence structures using SBES showed an intense mixing section in the glottis region during inhalation and in the nasopharynx during expiration, which was not present in the RANS simulations. CONCLUSION: Transient simulations of a realistic breathing cycle uncovered flow structures absent in simulations with a constant flow rate. Furthermore, the incorporation of glottis motion impacted airflow characteristics that suggest rigid respiratory walls do not accurately describe respiratory flow. Future research in respiratory airflow should be conducted using transient scale-resolving models in conjunction with moving respiratory walls to capture flow structures in detail.

2.
3.
Int J Pharm ; 642: 123098, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37321463

RESUMEN

Targeted nasal drug delivery can provide improved efficacy for drug formulations to be delivered at high efficacy rates. Some parameters that influence drug delivery have a dependency on the patient's technique of administration and the spray device itself. When the different parameters, each having a specific range of values are combined, the combinatory permutations for studying its effects on particle deposition become large. In this study, we combine six input spray parameters (the spray half-cone angle, the mean spray exit velocity, the breakup length from the nozzle exit, the diameter of the nozzle spray device, the particle size, and the sagittal angle of the spray) with a range of values to produce 384 combinations of spray characteristics. This was repeated for three inhalation flow rates of 20, 40, and 60 L/min. To reduce the computational costs of a full transient Large Eddy Simulation flow field, we create a time-averaged frozen field and perform the time integration of particle trajectories through the flow field to determine the particle deposition in four anatomical regions of the nasal cavity (anterior, middle, olfactory and posterior) for each of the 384 spray field. A sensitivity analysis determined the significance of each input variable on the deposition. It was found the particle size distribution significantly affected deposition in the olfactory and posterior regions, while the spray device insertion angle was significant for deposition in the anterior and middle regions. Five machine learning models were evaluated based on 384 cases and it was found that despite the small sample dataset the simulation data was sufficient to provide accurate machine-learning predictions.


Asunto(s)
Cavidad Nasal , Nariz , Humanos , Aerosoles , Simulación por Computador , Sistemas de Liberación de Medicamentos , Tamaño de la Partícula , Administración Intranasal
4.
Auris Nasus Larynx ; 50(6): 911-920, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37137797

RESUMEN

OBJECTIVE(S): Chronic rhinosinusitis (CRS) is common and often requires surgical intervention. Surgical failure may lead to persistent symptoms and recalcitrant disease, often secondary to synechiae between the middle turbinate (MT) and lateral nasal wall. Synechiae prevention techniques have been extensively investigated, however evidence for the effect of synechiae on sinonasal physiology is lacking. We aimed to model the effects of MT synechiae on a post-functional endoscopic sinus surgery (FESS) sinonasal cavity using computational fluid dynamics (CFD). METHODS: DICOM data from a CT-sinus of a healthy 25-year-old female was segmented to create a three-dimensional model. Virtual surgery was performed to simulate a "full-house" FESS procedure. Multiple models were created, each with a single unilateral virtual MT synechia of varying extent. CFD analysis was performed on each model and compared with a post-FESS control model without synechiae. Airflow velocity, humidity and mucosal surface and air temperature values were calculated. RESULTS: All synechiae models demonstrated aberrant downstream sinonasal airflow. There was reduced ventilation of the ipsilateral frontal, ethmoid and sphenoid sinuses, with a concentrated central "jet" in the middle meatus region. Effects were proportionate to the size of synechiae. The impact on bulk inspired airflow was negligible. CONCLUSION: Post-FESS synechiae between the MT and lateral nasal wall significantly disrupt local downstream sinus ventilation and nasal airflow. These findings may explain the persistent symptoms seen in post-FESS CRS patients with MT synechiae, reinforcing the importance of prevention and adhesiolysis. Larger cohort studies with multiple models of actual post-FESS patients with synechiae are required to validate these findings.


Asunto(s)
Senos Paranasales , Sinusitis , Femenino , Humanos , Adulto , Cornetes Nasales/diagnóstico por imagen , Cornetes Nasales/cirugía , Hidrodinámica , Endoscopía/métodos , Senos Paranasales/diagnóstico por imagen , Senos Paranasales/cirugía , Cavidad Nasal/cirugía , Sinusitis/cirugía
5.
Laryngoscope ; 133(6): 1328-1335, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37158263

RESUMEN

OBJECTIVES: Recent evidence suggests that detection of nasal mucosal temperature, rather than direct airflow detection, is the primary determinant of subjective nasal patency. This study examines the role of nasal mucosal temperature in the perception of nasal patency using in vivo and computational fluid dynamics (CFD) measurements. METHODS: Healthy adult participants completed Nasal Obstruction Symptom Evaluation (NOSE) and Visual Analogue Scale (VAS) questionnaires. A temperature probe measured nasal mucosal temperature at the vestibule, inferior turbinate, middle turbinate, and nasopharynx bilaterally. Participants underwent a CT scan, used to create a 3D nasal anatomy model to perform CFD analysis of nasal mucosal and inspired air temperature and heat flux along with mucosal surface area where heat flux >50 W/m2 (SAHF50). RESULTS: Eleven participants with a median age of 27 (IQR 24; 48) were recruited. Probe-measured temperature values correlated strongly with CFD-derived values (r = 0.87, p < 0.05). Correlations were seen anteriorly in the vestibule and inferior turbinate regions between nasal mucosal temperature and unilateral VAS (r = 0.42-0.46; p < 0.05), between SAHF50 and unilateral VAS (r = -0.31 to -0.36; p < 0.05) and between nasal mucosal temperature and SAHF50 (r = -0.37 to -0.41; p < 0.05). Subjects with high patency (VAS ≤10) had increased heat flux anteriorly compared with lower patency subjects (VAS >10; p < 0.05). CONCLUSION: Lower nasal mucosal temperature and higher heat flux within the anterior nasal cavity correlates with a perception of improved unilateral nasal patency in healthy individuals. LEVEL OF EVIDENCE: 4 Laryngoscope, 133:1328-1335, 2023.


Asunto(s)
Hidrodinámica , Obstrucción Nasal , Adulto , Humanos , Temperatura , Simulación por Computador , Cavidad Nasal/diagnóstico por imagen , Obstrucción Nasal/diagnóstico por imagen , Mucosa Nasal
6.
Pharmaceuticals (Basel) ; 16(3)2023 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-36986505

RESUMEN

The demand for a more efficient and targeted method for intranasal drug delivery has led to sophisticated device design, delivery methods, and aerosol properties. Due to the complex nasal geometry and measurement limitations, numerical modeling is an appropriate approach to simulate the airflow, aerosol dispersion, and deposition for the initial assessment of novel methodologies for better drug delivery. In this study, a CT-based, 3D-printed model of a realistic nasal airway was reconstructed, and airflow pressure, velocity, turbulent kinetic energy (TKE), and aerosol deposition patterns were simultaneously investigated. Different inhalation flowrates (5, 10, 15, 30, and 45 L/min) and aerosol sizes (1, 1.5, 2.5, 3, 6, 15, and 30 µm) were simulated using laminar and SST viscous models, with the results compared and verified by experimental data. The results revealed that from the vestibule to the nasopharynx, the pressure drop was negligible for flow rates of 5, 10, and 15 L/min, while for flow rates of 30 and 40 L/min, a considerable pressure drop was observed by approximately 14 and 10%, respectively. However, from the nasopharynx and trachea, this reduction was approximately 70%. The aerosol deposition fraction alongside the nasal cavities and upper airway showed a significant difference in pattern, dependent on particle size. More than 90% of the initiated particles were deposited in the anterior region, while just under 20% of the injected ultrafine particles were deposited in this area. The turbulent and laminar models showed slightly different values for the deposition fraction and efficiency of drug delivery for ultrafine particles (about 5%); however, the deposition pattern for ultrafine particles was very different.

7.
Am J Rhinol Allergy ; 37(3): 273-283, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36373577

RESUMEN

BACKGROUND: Nasal adhesions (NAs) are a known complication of nasal airway surgery. Even minor NAs can lead to significant postoperative nasal airway obstruction (NAO). Division of such NAs often provides much greater relief than anticipated. OBJECTIVE: We examine the impact of NAs at various anatomical sites on nasal airflow and mucosal cooling using computational fluid dynamics (CFD) and multiple test subjects. METHODS: CT scans of healthy adult subjects were used to construct three-dimensional nasal airway computational models. A single virtual 2.5 mm diameter NA was placed at one of five sites commonly seen following NAO surgery within each nasal cavity bilaterally, resulting in 10 NA models and 1 NA-free control for each subject. CFD analysis was performed on each NA model and compared with the subject's NA-free control model. RESULTS: 4 subjects were recruited to create 44 computational models. The NAs caused the airflow streamlines to separate, leading to a statistically significant increase in mucosal temperature immediately downstream to the NAs (wake region). Changes in the mucosal temperature in the wake region of the NAs were most prominent in anteriorly located NAs with a mean increase of 1.62 °C for the anterior inferior turbinate NAs (P < .001) and 0.63 °C for the internal valve NAs (P < .001). CONCLUSION: NAs result in marked disruption to airflow patterns and reduced mucosal cooling on critical surfaces, particularly in the wake region. Reduced wake region mucosal cooling may be a contributing factor to the exaggerated perception of nasal obstruction experienced by patients with NAs.


Asunto(s)
Obstrucción Nasal , Adulto , Humanos , Obstrucción Nasal/cirugía , Hidrodinámica , Cavidad Nasal/diagnóstico por imagen , Cornetes Nasales/cirugía , Nasofaringe , Simulación por Computador
8.
Comput Methods Programs Biomed ; 228: 107243, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36403552

RESUMEN

BACKGROUND AND OBJECTIVE: Brachycephalic obstructive airway syndrome (BOAS) susceptible dogs (e.g., French bulldog), suffer health complications related to deficient breathing primarily due to anatomical airway geometry. Surgical interventions are known to provide acceptable functional and cosmetic results; however, the long-term post-surgery outcome is not well known. In silico analysis provides an objective measure to quantify the respiratory function in postoperative dogs which is critical for successful long-term outcomes. A virtual surgery to open the airway can explore the ability for improved breathing in an obstructed airway of a patient dog, thus supporting surgeons in pre-surgery planning using computational fluid dynamics. METHODS: In this study five surgical interventions were generated with a gradual increment of decongested levels in a bulldog based on computed tomography images. The effects of the decongested airways on the breathing function of a patient bulldog, i.e., airflow characteristics, pressure drop, wall shear stress, and air-conditioning capacity, were quantified by benchmarking against a clinically healthy bulldog using computational fluid dynamics (CFD) method. RESULTS: Our findings demonstrated a promising decrease in excessive airstream velocity, pressure drop, and wall shear stress in virtual surgical scenarios, while constantly preserving adequate air-conditioning efficiency. A linear fit curve was proposed to correlate the reduction in the pressure drop and decongested level. CONCLUSIONS: The in silico analysis is a viable tool providing visual and quantitative insight into new unexplored surgical techniques.


Asunto(s)
Perros , Animales
9.
Respir Physiol Neurobiol ; 308: 103986, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36396028

RESUMEN

Identifying the deposition pattern of inhaled pharmaceutical aerosols in the human respiratory system and understanding the effective parameters in this process is vital for more efficient drug delivery to this region. This study investigated aerosol deposition in a patient-specific upper respiratory airway and determined the deposition fraction (DF) and pressure drop across the airway. An experimental setup was developed to measure the pressure drop in the same realistic geometry printed from the patient-specific geometry. The unsteady simulations were performed with a flow rate of 15 L/min and different particle diameters ranging from 2 to 30 µm. The results revealed significant flow circulation after the nasal valve in the upper and oropharynx regions, and a maximum local velocity observed in the nasopharynx. Transient cumulative deposition fraction showed that after 2 s of the simulation, all particles deposit or escape the computational domain. About 30 % of the injected large particles (dp ≥ 20 µm) deposited in the first 1 cm away from the nostril and more than 95 % deposited in the nasal airway before entering the oropharynx region. While almost 94 % deposition in trachea was composed of particles smaller than 5 µm. Approximately 20 % of inhaled fine particles (2-5 µm) deposited in the upper airway and the rest deposited in oropharynx, larynx and trachea.


Asunto(s)
Laringe , Tráquea , Humanos , Espiración , Tamaño de la Partícula , Administración por Inhalación , Aerosoles , Simulación por Computador , Modelos Biológicos
10.
Comput Methods Programs Biomed ; 227: 107223, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36370595

RESUMEN

BACKGROUND AND OBJECTIVE: Nasal saline irrigation is a common therapy for inflammatory nasal and paranasal disease or for managing post nasal and sinus surgery recovery. Two common irrigation devices include the netipot and squeeze bottles, where anecdotally, these devices alleviate congestion, facial pain, and pressure. However, a quantitative evaluation of these devices' performance and the fluid dynamics responsible for the irrigation distribution through the nose is lacking. This study tracked the liquid surface coverage and wall shear stresses during nasal saline irrigation produced from a Neti Pot and squeeze bottle. METHODS: This study used transient computational fluid dynamics (CFD) simulations to investigate the saline irrigation flow field in a subject-specific sinonasal model. The computational nasal cavity model was constructed from a high-resolution computed tomography scan (CT). The irrigation procedure applied a head position tilted at 90° forward using an 80 ml squeeze bottle and 120 ml Neti Pot. RESULTS: The results from a single sinonasal model demonstrated that the Neti Pot irrigation was more effective in delivering saline solution to the nasal cavity on the contralateral side of irrigation due to typically larger volumes but at the expense of reduced flow and shearing rates, as the flow entered under gravitational forces. The squeeze bottle irrigation provided greater surface coverage on the side of irrigation. CONCLUSIONS: The results from the single patient model, demonstrated the Neti Pot increased surface coverage in the paranasal sinuses. Reducing the jet diameter may aid the direct targeting of a specific region at the side of irrigation by preventing the impingement of the jet to the nasal passage surface and redirection of the flow. Evaluating this performance across a wider cohort of patients can strengthen the findings.


Asunto(s)
Senos Paranasales , Solución Salina , Humanos , Irrigación Terapéutica/métodos , Senos Paranasales/cirugía , Cavidad Nasal/diagnóstico por imagen , Hidrodinámica
11.
Pharmaceuticals (Basel) ; 15(10)2022 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-36297371

RESUMEN

Pulmonary drug delivery aims to deliver particles deep into the lungs, bypassing the mouth−throat airway geometry. However, micron particles under high flow rates are susceptible to inertial impaction on anatomical sites that serve as a defense system to filter and prevent foreign particles from entering the lungs. The aim of this study was to understand particle aerodynamics and its possible deposition in the mouth−throat airway that inhibits pulmonary drug delivery. In this study, we present an analysis of the aerodynamics of inhaled particles inside a patient-specific mouth−throat model generated from MRI scans. Computational Fluid Dynamics with a Discrete Phase Model for tracking particles was used to characterize the airflow patterns for a constant inhalation flow rate of 30 L/min. Monodisperse particles with diameters of 7 µm to 26 µm were introduced to the domain within a 3 cm-diameter sphere in front of the oral cavity. The main outcomes of this study showed that the time taken for particle deposition to occur was 0.5 s; a narrow stream of particles (medially and superiorly) were transported by the flow field; larger particles > 20 µm deposited onto the oropharnyx, while smaller particles < 12 µm were more disperse throughout the oral cavity and navigated the curved geometry and laryngeal jet to escape through the tracheal outlet. It was concluded that at a flow rate of 30 L/min the particle diameters depositing on the larynx and trachea in this specific patient model are likely to be in the range of 7 µm to 16 µm. Particles larger than 16 µm primarily deposited on the oropharynx.

12.
Sci Total Environ ; 853: 158770, 2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36108859

RESUMEN

Inhaled particulate matter is associated with nasal diseases such as allergic rhinitis, rhinosinusitis and neural disorders. Its health risks on humans are usually evaluated by measurements on monkeys as they share close phylogenetic relationship. However, the reliability of cross-species toxicological extrapolation is in doubt due to physiological and anatomical variations, which greatly undermine the reliability of these expensive human surrogate models. This study numerically investigated in-depth microparticle transport and deposition characteristics on human and monkey (Macaca fuscata) nasal cavities that were reconstructed from CT-images. Deposition characteristics of 1-30µm particles were investigated under resting and active breathing conditions. Similar trends were observed for total deposition efficiencies and a single correlation using Stokes Number was fitted for both species and both breathing conditions, which is convenient for monkey-human extrapolation. Regional deposition patterns were carefully compared using the surface mapping technique. Deposition patterns of low, medium and high inertial particles, classified based on their total deposition efficiencies, were further analyzed in the 3D view and the mapped 2D view, which allows locating particle depositions on specific nasal regions. According to the particle intensity contours and regional deposition profiles, the major differences were observed at the vestibule and the floor of the nasal cavity, where higher deposition intensities of medium and high inertial particles were shown in the monkey case than the human case. Comparisons of airflow streamlines indicated that the cross-species variations of microparticle deposition patterns are mainly contributed by two factors. First, the more oblique directions of monkey nostrils result in a sharper airflow turn in the vestibule region. Second, the monkey's relatively narrower nasal valves lead to higher impaction of medium and high inertial particles on the nasal cavity floor. The methods and findings in this study would contribute to an improved cross-species toxicological extrapolation between human and monkey nasal cavities.


Asunto(s)
Cavidad Nasal , Material Particulado , Animales , Humanos , Cavidad Nasal/fisiología , Tamaño de la Partícula , Administración por Inhalación , Haplorrinos , Filogenia , Reproducibilidad de los Resultados , Simulación por Computador
13.
Pharm Res ; 39(10): 2569-2584, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36056272

RESUMEN

PURPOSE: Nasal saline irrigation is highly recommended in patients following functional endoscopic sinus surgery (FESS) to aid the postoperative recovery. Post-FESS patients have significantly altered anatomy leading to markedly different flow dynamics from those found in pre-op or non-diseased airways, resulting in unknown flow dynamics. METHODS: This work investigated how the liquid stream disperses through altered nasal cavities following surgery using Computational Fluid Dynamics (CFD). A realistic squeeze profile was determined from physical experiments with a 27-year-old male using a squeeze bottle with load sensors. The administration technique involved a head tilt of 45-degrees forward to represent a head position over a sink. After the irrigation event that lasted 4.5 s, the simulation continued for an additional 1.5 s, with the head orientation returning to an upright position. RESULTS: The results demonstrated that a large maxillary sinus ostium on the right side allows saline penetration into this sinus. The increased volume of saline entering the maxillary sinus limits the saline volume available to the rest of the sinonasal cavity and reduces the surface coverage of the other paranasal sinuses. The average wall shear stress was higher on the right side than on the other side for two patients. The results also revealed that head position alters the sinuses' saline residual, especially the frontal sinuses. CONCLUSION: While greater access to sinuses is achieved through FESS surgery, patients without a nasal septum limits posterior sinus penetration due to the liquid crossing over to the contralateral cavity and exiting the nasal cavity early.


Asunto(s)
Hidrodinámica , Senos Paranasales , Adulto , Endoscopía/métodos , Humanos , Masculino , Cavidad Nasal , Lavado Nasal (Proceso)/métodos , Senos Paranasales/cirugía , Solución Salina
14.
Int J Numer Method Biomed Eng ; 38(4): e3581, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35142094

RESUMEN

Air conditioning is a dual heat and mass transfer process, and the human nasal cavity achieves this through the mucosal wall surface, which is supplied with an energy source through the sub-epithelial network of capillaries. Computational studies of air conditioning in the nasal cavity have included temperature and humidity, but most studies solved these flow parameters separately, and in some cases, a constant mucosal surface temperature was used. Recent developments demonstrated that both heat and mass transfer need to be modeled. This work expands on existing modeling efforts in accounting for the nasal cavity's dual heat and mass transfer process by introducing a new subwall model, given in the Supplementary Materials. The model was applied to a pipe geometry, and a human nasal cavity was recreated from CT-scans, and six inhalation conditions were studied. The results showed that when the energy transfer from the latent heat of evaporation is included, there is a cooling effect on the mucosal surface temperature.


Asunto(s)
Calor , Cavidad Nasal , Humanos , Humedad , Nariz , Temperatura
15.
Pharm Res ; 39(2): 317-327, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35137359

RESUMEN

BACKGROUND: Optimising intranasal distribution and retention of topical therapy is essential for effectively managing patients with chronic rhinosinusitis, including those that have had functional endoscopic sinus surgery (FESS). This study presents a new technique for quantifying in vitro experiments of fluticasone propionate deposition within the sinuses of a 3D-printed model from a post-FESS patient. METHODS: Circular filter papers were placed on the sinus surfaces of the model. Deposition of fluticasone on the filter paper was quantified using high-performance liquid chromatography (HPLC) assay-based techniques. The deposition patterns of two nasal drug delivery devices, an aqueous nasal spray (Flixonase) and metered dose inhaler (Flixotide), were compared. The effects of airflow (0 L/min vs. 12 L/min) and administration angle (30° vs. and 45°) were evaluated. RESULTS: Inhaled airflow made little difference to sinus deposition for either device. A 45° administration angle improved frontal sinus deposition with the nasal spray and both ethmoidal and sphenoidal deposition with the inhaler. The inhaler provided significantly better deposition within the ethmoid sinuses (8.5x) and within the maxillary sinuses (3.9x) compared with the nasal spray under the same conditions. CONCLUSION: In the post-FESS model analysed, the inhaler produced better sinus deposition overall compared with the nasal spray. The techniques described can be used and adapted for in vitro performance testing of different drug formulations and intranasal devices under different experimental conditions. They can also help validate computational fluid dynamics modelling and in vivo studies.


Asunto(s)
Fluticasona/administración & dosificación , Glucocorticoides/administración & dosificación , Modelos Anatómicos , Senos Paranasales/metabolismo , Administración por Inhalación , Composición de Medicamentos , Femenino , Fluticasona/química , Fluticasona/metabolismo , Glucocorticoides/química , Glucocorticoides/metabolismo , Humanos , Inhaladores de Dosis Medida , Persona de Mediana Edad , Rociadores Nasales , Senos Paranasales/anatomía & histología , Senos Paranasales/cirugía , Impresión Tridimensional , Distribución Tisular , Cirugía Endoscópica Transanal
16.
Phys Fluids (1994) ; 33(8): 081913, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34552313

RESUMEN

Face masks and respirators are used to filter inhaled air, which may contain airborne droplets and high particulate matter (PM) concentrations. The respirators act as a barrier to the inhaled and exhaled air, which may change the nasal airflow characteristics and air-conditioning function of the nose. This study aims to investigate the nasal airflow dynamics during respiration with and without an N95 respirator driven by airflow through the nasal cavity to assess the effect of the respirator on breathing conditions during respiration. To achieve the objective of this study, transient computational fluid dynamics simulations have been utilized. The nasal geometry was reconstructed from high-resolution Computed Tomography scans of a healthy 25-year-old female subject. The species transport method was used to analyze the airflow, temperature, carbon dioxide (CO2), moisture content (H2O), and temperature distribution within the nasal cavity with and without an N95 respirator during eight consecutive respiration cycles with a tidal volume of 500 ml. The results demonstrated that a respirator caused excessive CO2 inhalation by approximately 7 × greater per breath compared with normal breathing. Furthermore, heat and mass transfer in the nasal cavity was reduced, which influences the perception of nasal patency. It is suggested that wearers of high-efficiency masks that have minimal porosity and low air exchange for CO2 regulation should consider the amount of time they wear the mask.

17.
Respir Physiol Neurobiol ; 294: 103769, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34352383

RESUMEN

Middle turbinate resection significantly alters the anatomy and redistributes the inhaled air. The superior half of the main nasal cavity is opened up, increasing accessibility to the region. This is expected to increase inhalation dosimetry to the region during exposure to airborne particles. This study investigated the influence of middle turbinate resection on the deposition of inhaled pollutants that cover spherical and non-spherical particles (e.g. pollen). A computational model of the nasal cavity from CT scans, and its corresponding post-operative model with virtual surgery performed was created. Two constant flow rates of 5 L/min, and 15 L/min were simulated under a laminar flow field. Inhaled particles including pollen (non-spherical), and a spherical particle with reference density of 1000 kg/m3 were introduced in the surrounding atmosphere. The effect of surgery was most prominent in the less patent cavity side, since the change in anatomy was proportionally greater relative to the original airway space. The left cavity produced an increase in particle deposition at a flow rate of 15 L/min. The main particle deposition mechanisms were inertial impaction, and to a lesser degree gravitational sedimentation. The results are expected to provide insight into inhalation efficiency of different aerosol types, and the likelihood of deposition in different nasal cavity surfaces.


Asunto(s)
Aerosoles , Hidrodinámica , Inhalación/fisiología , Modelos Teóricos , Cavidad Nasal , Polen , Cornetes Nasales/cirugía , Humanos , Material Particulado
18.
Respir Physiol Neurobiol ; 293: 103719, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34147672

RESUMEN

Nasal adhesions are a known postoperative complication following surgical procedures for nasal airway obstruction (NAO); and are a common cause of surgical failure, with patients often reporting significant NAO, despite relatively minor adhesion size. Division of such nasal adhesions often provides much greater relief than anticipated, based on the minimal reduction in cross-sectional area associated with the adhesion. The available literature regarding nasal adhesions provides little evidence examining their quantitative and qualitative effects on nasal airflow using objective measures. This study examined the impact of nasal adhesions at various anatomical sites on nasal airflow and mucosal cooling using computational fluid dynamics (CFD). A high-resolution CT scan of the paranasal sinuses of a 25-year-old, healthy female patient was segmented to create a three-dimensional nasal airway model. Virtual nasal adhesions of 2.5 mm diameter were added to various locations within the nasal cavity, representing common sites seen following NAO surgery. A series of models with single adhesions were created. CFD analysis was performed on each model and compared with a baseline no-adhesion model, comparing airflow and heat and mass transfer. The nasal adhesions resulted in no significant change in bulk airflow patterns through the nasal cavity. However, significant changes were observed in local airflow and mucosal cooling around and immediately downstream to the nasal adhesions. These were most evident with anterior nasal adhesions at the internal valve and anterior inferior turbinate. Postoperative nasal adhesions create local airflow disruption, resulting in reduced local mucosal cooling on critical surfaces, explaining the exaggerated perception of nasal obstruction. In particular, anteriorly located adhesions created greater disruption to local airflow and mucosal cooling, explaining their associated greater subjective sensation of obstruction.


Asunto(s)
Hidrodinámica , Modelos Biológicos , Mucosa Nasal/fisiopatología , Enfermedades Nasales/fisiopatología , Adherencias Tisulares/fisiopatología , Adulto , Femenino , Humanos , Temperatura
19.
J Biomech ; 123: 110490, 2021 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-34022532

RESUMEN

Nasal irrigation is a widely recognized treatment for several sinonasal diseases. However, there is a lack of clear evidence-based guidelines for optimal irrigation delivery to improve lavage and topical drug delivery. This study uses computational fluid dynamics (CFD) to assess the effects of different head tilt positions on sinonasal coverage, residence time and shear stresses in squeeze-bottle nasal irrigation. A sinonasal cavity computational model was constructed from a high-resolution CT scan of a healthy, 25-year-old Asian female. The Volume of Fluid method was used to track the interface between the two immiscible fluids (air and water). The direction of gravity was varied to simulate different head tilt-positions (0° Straight, 45° Forward, 45° Left, 45° Right and 45° Backward) during nasal irrigation with 150 mL liquid via a squeeze bottle through the left nostril for 2 s with a 0.1 s acceleration/deceleration time. The results showed that the 45° backward head tilt position was the most effective in delivering irrigation to the ethmoid, frontal and sphenoid sinuses. Altering head tilt had minimal impact on irrigation delivery to the maxillary sinuses. Maximum wall shear stresses seen in localized areas of the sinus mucosa varied significantly with different head tilt angles. However, the difference in mean wall shear stress on the sinus surfaces was marginal with changing head tilt position. The findings suggest that an optimized head tilt position can be identified to improve liquid irrigation to targeted sinuses, as per treatment requirements (lavage and topical drug delivery).


Asunto(s)
Hidrodinámica , Lavado Nasal (Proceso) , Adulto , Femenino , Humanos , Cavidad Nasal , Irrigación Terapéutica , Tomografía Computarizada por Rayos X
20.
Biosens Bioelectron ; 183: 113214, 2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-33836431

RESUMEN

Light absorption and interfacial engineering of photoactive materials play vital roles in photoexcited electron generation and electron transport, and ultimately boost the performance of photoelectrochemical (PEC) biosensing. In this work, a novel high-performance photoelectrochemical (PEC) biosensing platform was fabricated based on nonmetallic plasmonic tungsten oxide hydrate nanosheets (WO3•H2O) coupling with nitrogen doped graphene quantum dots (N-GQDs) by a facile one-step hydrothermal approach. The localized surface plasmon resonance (LSPR) properties were achieved by oxygen vacancy engineered WO3·H2O (dWO3•H2O), which could greatly extend the light absorption from visible light to near-infrared light. Moreover, by coupling with N-GQDs, the as-fabricated heterojunction (dWO3•H2O@N-GQD) provided a much enhanced photoelectric response due to the efficient charge transfer. By conjugation with E.coli O157:H7 aptamer, a novel PEC aptasensor based on dWO3•H2O@N-GQD heterojunction was fabricated with a high sensitivity for detection of E.coli O157:H7. The limit of detection (LOD) of this PEC aptasensor is 0.05 CFU/mL with a linear detection range from 0.1 to 104 CFU/mL. Moreover, high reproducibility and good accuracy could also be achieved for analysis in milk samples. This work could provide a promising platform for the development of PEC bioanalysis and offer an insight into the non-metallic plasmonic materials based heterojunctions for high-performances PEC biosensing.


Asunto(s)
Técnicas Biosensibles , Escherichia coli O157 , Grafito , Puntos Cuánticos , Técnicas Electroquímicas , Nitrógeno , Óxidos , Reproducibilidad de los Resultados , Tungsteno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...