Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros












Base de datos
Intervalo de año de publicación
1.
Soft Matter ; 19(46): 9082-9091, 2023 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-37987474

RESUMEN

We investigate the yielding under shear for dilute poly(N-isopropyl acrylamide-co-fumaric acid) (PNIPAM-FAc) colloidal gels obtained above the volume phase transition temperature. In this temperature range, the microgel suspensions form colloidal gels due to hydrophobic interparticle interactions under appropriate pH and ionic strength conditions. Step-strain tests revealed that yielding occurs when the applied strain exceeds a specific threshold, requiring a finite, stress-independent delay time (tD). This is distinct from previous findings on delayed yielding in other colloidal gels, where tD decreases with increasing stress. In the start-up shear tests, yield strain (γy) at a higher strain rate () increases with escalating , while γy at lower  remains constant. This characteristic γy- relationship is successfully explained by a simple model using the stress-independent tD value without an adjustable fitting parameter. The distinctive yielding behavior, underscored by a stress-independent tD, is expected to originate from strain-induced macroscopic phase separation into a dense colloidal gel and water, observable separately from rheological measurements.

2.
Langmuir ; 38(51): 16084-16093, 2022 12 27.
Artículo en Inglés | MEDLINE | ID: mdl-36441944

RESUMEN

Although many investigations of thermoresponsive microgels have been reported, their surface properties, which are crucial in colloid science, are still not fully understood. In this study, microgels with surface-localized charged groups were synthesized by precipitation polymerization, and their electrophoretic behaviors were analyzed using a modified version of Ohshima's equation to obtain two surface properties of the soft particles: the softness parameter and the surface charge density. This systematic evaluation allows us to discuss the thermoresponsiveness of the overall microgels and their surfaces separately. Furthermore, the validity of the surface properties obtained from electrophoresis was verified by comparing them with the results of seeded emulsion polymerization in the presence of the microgels and the force-indentation curves obtained via high-speed atomic force microscopy (HS-AFM).


Asunto(s)
Microgeles , Geles , Electroforesis , Propiedades de Superficie , Emulsiones
3.
Lab Chip ; 21(7): 1299-1306, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33734243

RESUMEN

Regenerative medicine and drug development require large numbers of high-quality cells, usually delivered from in vitro culturing. During culturing, the appearance of unwanted cells and an inability to remove them without damaging or losing most if not all the surrounding cells in the culture reduce the overall quality of the cultured cells. This is a key problem in cell culturing, as is the inability to sample cells from a culture as desired to verify the quality of the culture. Here, we report a method to locally remove cells from an adherent cell culture using a 100.4 MHz focused surface acoustic wave (SAW) device. After exposing a plated C2C12 mouse myoblast cell culture to phosphate buffered solution (PBS), ultrasound from the SAW device transmitted into the cell culture via a coupling water droplet serves to detach a small grouping of cells. The cells are removed from an area 6 × 10-3 mm2, equivalent to about 12 cells, using a SAW device-Petri dish water gap of 1.5 mm, a PBS immersion time of 300 s, and an input voltage of 75 V to the SAW device. Cells were released as desired 90% of the time, releasing the cells from the target area nine times out of ten runs. In the one trial in ten that fails, the cells partially release and remain attached due to inter-cellular binding. By making it possible to target and remove small groups of cells as desired, the quality of cell culturing may be significantly improved. The small group of cells may be considered a colony of iPS cells. This targeted cell removal method may facilitate sustainable, contamination-free, and automated refinement of cultured cells.


Asunto(s)
Células Madre Pluripotentes Inducidas , Sonido , Animales , Técnicas de Cultivo de Célula , Línea Celular , Células Cultivadas , Ratones
4.
Langmuir ; 37(1): 151-159, 2021 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-33355463

RESUMEN

Although techniques to produce uniformly sized hydrogel microspheres (microgels) by aqueous free-radical precipitation polymerization are well established, the details of the polymerization process remain mysterious. In the present study, the structural evolution and thermoresponsiveness of the developing microgels during the polymerization were evaluated by temperature-controlled high-speed atomic force microscopy. This analysis clarified that the swelling properties of the precursor microgels formed in the early stages of the polymerization are quite low due to the high incorporation of cross-linkers and that non-thermoresponsive deca-nanosized spherical domains are already present in the precursor microgels. Furthermore, we succeeded in tracking the formation of nuclei and their growth process, which has never been fully understood, in aqueous solution by real-time observations. These findings will help us to design functional microgels with the desired nanostructures via precipitation polymerization.

5.
RSC Adv ; 11(22): 13130-13137, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-35423887

RESUMEN

Thermoresponsive hydrogel microspheres (microgels) are smart materials that quickly respond to external stimuli, and their thermoresponsiveness can be tuned by varying the constituent chemical species. Although uniformly sized microgels can be prepared via aqueous free radical precipitation polymerization, the nanostructure of the obtained microgels is complex and remains unclear so far. In the present study, the nanostructure and thermoresponsiveness of poly(N-isopropyl methacrylamide) (pNIPMAm)-based microgels, which have a volume-transition temperature of ∼43 °C, were evaluated mainly using temperature-controllable high-speed atomic force microscopy. These observations, which are characterized by high spatio-temporal resolution, revealed that the pNIPMAm microgels have a peculiar heterogeneous structure, for example a core-shell and non-thermoresponsive nanostructure in the core region, that originates from the precipitation polymerization process. Furthermore, it was found that the adsorption concentration of the microgels on the substrate is one of the keys for controlling their thermoresponsiveness. These findings can be expected to advance the design of new materials such as thermoresponsive nanosheets and stimuli-responsive coatings.

6.
PLoS One ; 15(7): e0235827, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32667933

RESUMEN

Homogenization of the initial cell distribution is essential for effective cell development. However, there are few previous reports on efficient cell seeding methods, even though the initial cell distribution has a large effect on cell proliferation. Dense cell regions have an inverse impact on cell development, known as contact inhibition. In this study, we developed a method to homogenize the cell seeding density using secondary flow, or Ekman transportation, induced by orbital movement of the culture dish. We developed an orbital shaker device that can stir the medium in a 35-mm culture dish by shaking the dish along a circular orbit with 2 mm of eccentricity. The distribution of cells in the culture dish can be controlled by the rotational speed of the orbital shaker, enabling dispersion of the initial cell distribution. The experimental results indicated that the cell density became most homogeneous at 61 rpm. We further evaluated the cell proliferation after homogenization of the initial cell density at 61 rpm. The results revealed 36% higher proliferation for the stirred samples compared with the non-stirred control samples. The present findings indicate that homogenization of the initial cell density by Ekman transportation contributes to the achievement of higher cell proliferation.


Asunto(s)
Técnicas de Cultivo de Célula/instrumentación , Mioblastos/citología , Animales , Recuento de Células , Técnicas de Cultivo de Célula/economía , Técnicas de Cultivo de Célula/métodos , Diferenciación Celular , Línea Celular , Proliferación Celular , Diseño de Equipo , Ratones
7.
Eng Life Sci ; 19(8): 575-583, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32625033

RESUMEN

Cell isolation by eliminating undesirable cell aggregations or colonies with low activity is essential to improve cell culture efficiency. Moreover, when creating tissues from induced pluripotent stem cells, residual undifferentiated cells must be removed to prevent tumor formation in vivo. Here, we evaluated the use of ultrasonic irradiation, which can apply energy locally without contact, and proposed a method to eliminate cells in a small area of culture by ultrasonic irradiation from a Langevin transducer. We constructed a device that incorporated a bolt-clamped 19.84 kHz Langevin transducer with an ultrasonic horn and determined the optimal conditions for stable elimination of cells in small areas of a 35-mm culture dish. The optimal conditions were as follows: number of cycles = 400, clearance distance = 1 mm, volume of medium = 4 mL, and distance from the center of culture surface = 0 mm. The mean cell elimination area under these conditions was 0.097 mm2. We also evaluated the viability of neighboring cells after ultrasonic irradiation by fluorescent staining and found that most cells around the elimination area survived. These findings suggest that the proposed method has potential for localized elimination of cells without the need for contact with the cell surface.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...