Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
ACS Nano ; 18(13): 9365-9377, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38517349

RESUMEN

The emerging field of wearable electronics requires power sources that are flexible, lightweight, high-capacity, durable, and comfortable for daily use, which enables extensive use in electronic skins, self-powered sensing, and physiological health monitoring. In this work, we developed the core-shell and biocompatible Cs2InCl5(H2O)@PVDF-HFP nanofibers (CIC@HFP NFs) by one-step electrospinning assisted self-assembly method for triboelectric nanogenerators (TENGs). By adopting lead-free Cs2InCl5(H2O) as an inducer, CIC@HFP NFs exhibited ß-phase-enhanced and self-aligned nanocrystals within the uniaxial direction. The interface interaction was further investigated by experimental measurements and molecular dynamics, which revealed that the hydrogen bonds between Cs2InCl5(H2O) and PVDF-HFP induced automatically well-aligned dipoles and stabilized the ß-phase in the CIC@HFP NFs. The TENG fabricated using CIC@HFP NFs and nylon-6,6 NFs exhibited significant improvement in output voltage (681 V), output current (53.1 µA) and peak power density (6.94 W m-2), with the highest reported output performance among TENGs based on halide-perovskites. The energy harvesting and self-powered monitoring performance were further substantiated by human motions, showcasing its ability to charge capacitors and effectively operate electronics such as commercial LEDs, stopwatches, and calculators, demonstrating its promising application in biomechanical energy harvesting and self-powered sensing.

2.
Small ; : e2309750, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38299490

RESUMEN

Nanoarchitectonics of semiconductors shed light on efficient photocatalytic hydrogen evolution by precisely controlling the surface microenvironment of cocatalysts. Taking cadmium zinc sulfide (CZS) nanoparticles as a target, the spontaneous modifications are conducted by interactions between surface Cd2+ /Zn2+ atoms and thiol groups in thioglycolic acid. The capping ligand impacts the semiconductor surface with a negative electronic environment, contributing to the full coverage of CZS by nickel-cobalt hydroxides (NiCo-LDHs) cocatalysts. The obtained core-shell CZS@NiCo-LDHs, possessing a shell thickness of ≈20 nm, exhibits a distinguished topology (SBET  = 87.65m2  g-1 ), long surface carrier lifetime, and efficient charge-hole separation. Further photocatalytic hydrogen evaluation demonstrates an enhanced H2 evolution rate of 18.75 mmol g-1  h-1 with an apparent quantum efficiency of 16.3% at 420 nm. The recorded catalytic performance of the core-shell sample is 44.6 times higher than that of pure CZS nanospheres under visible light irradiation. Further density functional theory simulations indicate that sulfur atoms play the role of charge acceptor and surface Ni/Co atoms are electron donors, as well as a built-in electric field effect can be established. Altogether, this work takes advantage of strong S affinity from surface metal atoms, revealing the interfacial engineering toward improved visible-light-driven photocatalytic hydrogen evolution (PHE) activity.

3.
Nat Commun ; 14(1): 7304, 2023 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-37951934

RESUMEN

Multiferroic materials have ignited enormous interest owing to their co-existence of ferroelectricity and ferromagnetism, which hold substantial promise for advanced device applications. However, the size effect, dangling bonds, and interface effect in traditional multiferroics severely hinder their potential in nanoscale device applications. Recent theoretical and experimental studies have evidenced the possibility of realizing two-dimensional (2D) multiferroicity in van der Waals (vdW) layered CuCrP2S6. However, the incorporation of magnetic Cr ions in the ferroelectric framework leads to antiferroelectric and antiferromagnetic orderings, while macroscopic spontaneous polarization is always absent. Herein, we report the direct observation of robust out-of-plane ferroelectricity in 2D vdW CuCrP2S6 at room temperature with a comprehensive investigation. Modification of the ferroelectric polarization states in 2D CuCrP2S6 nanoflakes is experimentally demonstrated. Moreover, external electric field-induced polarization switching and hysteresis loops are obtained in CuCrP2S6 down to ~2.6 nm (4 layers). By using atomically resolved scanning transmission electron microscopy, we unveil the origin of the emerged room-temperature ferroelectricity in 2D CuCrP2S6. Our work can facilitate the development of multifunctional nanodevices and provide important insights into the nature of ferroelectric ordering of this 2D vdW material.

4.
Mater Horiz ; 10(9): 3719-3728, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37403831

RESUMEN

Currently, for most three-terminal neuromorphic devices, only the gate terminal is active. The inadequate modes and freedom of modulation in such devices greatly hinder the implementation of complex neural behaviors and brain-like thinking strategies in hardware systems. Taking advantage of the unique feature of co-existing in-plane (IP) and out-of-plane (OOP) ferroelectricity in two-dimensional (2D) ferroelectric α-In2Se3, we construct a three-active-terminal neuromorphic device where any terminal can modulate the conductance state. Based on the co-operation mode, controlling food intake as a complex nervous system-level behavior is achieved to carry out positive and negative feedback. Specifically, reinforcement learning as a brain-like thinking strategy is implemented due to the coupling between polarizations in different directions. Compared to the single modulation mode, the chance of the agent successfully obtaining the reward in the Markov decision process is increased from 68% to 82% under the co-operation mode through the coupling effect between IP and OOP ferroelectricity in 2D α-In2Se3 layers. Our work demonstrates the practicability of three-active-terminal neuromorphic devices in handling complex tasks and advances a significant step towards implementing brain-like learning strategies based on neuromorphic devices for dealing with real-world challenges.

5.
ACS Nano ; 17(7): 7035-7046, 2023 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-36994837

RESUMEN

To develop intelligent wearable protection systems is of great significance to human health engineering. An ideal intelligent air filtration system should possess reliable filtration efficiency, low pressure drop, healthcare monitoring function, and man-machine interactive capability. However, no existing intelligent protection system covers all these essential aspects. Herein, we developed an intelligent wearable filtration system (IWFS) via advanced nanotechnology and machine learning. Based on the triboelectric mechanism, the fabricated IWFS exhibits a long-lasting high particle filtration efficiency and bacteria protection efficiency of 99% and 100%, respectively, with a low-pressure drop of 5.8 mmH2O. Correspondingly, the charge accumulation of the optimized IWFS (87 nC) increased to 3.5 times that of the pristine nanomesh, providing a significant enhancement of the particle filtration efficiency. Theoretical principles, including the enhancement of the ß-phase and the lower surface potential of the modified nanomesh, were quantitatively investigated by molecular dynamics simulation, band theory, and Kelvin probe force microscopy. Furthermore, we endowed the IWFS with a healthcare monitoring function and man-machine interactive capability through machine learning and wireless transmission technology. Crucial physiological signals of people, including breath, cough, and speaking signals, were detected and classified, with a high recognition rate of 92%; the fabricated IWFS can collect healthcare data and transmit voice commands in real time without hindrance by portable electronic devices. The achieved IWFS not only has practical significance for human health management but also has great theoretical value for advanced wearable systems.


Asunto(s)
Dispositivos Electrónicos Vestibles , Humanos , Nanotecnología , Aprendizaje Automático
6.
Nat Nanotechnol ; 18(1): 55-63, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36509923

RESUMEN

Memory transistors based on two-dimensional (2D) ferroelectric semiconductors are intriguing for next-generation in-memory computing. To date, several 2D ferroelectric materials have been unveiled, among which 2D In2Se3 is the most promising, as all the paraelectric (ß), ferroelectric (α) and antiferroelectric (ß') phases are found in 2D quintuple layers. However, the large-scale synthesis of 2D In2Se3 films with the desired phase is still absent, and the stability for each phase remains obscure. Here we show the successful growth of centimetre-scale 2D ß-In2Se3 film by chemical vapour deposition including distinct centimetre-scale 2D ß'-In2Se3 film by an InSe precursor. We also demonstrate that as-grown 2D ß'-In2Se3 films on mica substrates can be delaminated or transferred onto flexible or uneven substrates, yielding α-In2Se3 films through a complete phase transition. Thus, a full spectrum of paraelectric, ferroelectric and antiferroelectric 2D films can be readily obtained by means of the correlated polymorphism in 2D In2Se3, enabling 2D memory transistors with high electron mobility, and polarizable ß'-α In2Se3 heterophase junctions with improved non-volatile memory performance.

7.
Adv Sci (Weinh) ; 8(22): e2102207, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34612021

RESUMEN

Supported metallic nanoparticles render highly tunable physical and chemical properties to mixed-dimensionality materials in electrocatalysts. However, some supports are susceptible to being dissolved in acidic solution or are unstable in ambient air. The development of high-performance catalysts has been facing the major hurdles of the sluggish activity in alkaline solution and requesting high energy to stabilize the nanoparticles on their supports, challenging the pH-universality and the applicability of the supported metallic nanoparticles. Here, a one-step strategy is proposed to modulate the growth of Pt quantum dots (QDs) on HF-free MXene under atomic-level by a low-temperature metal-support interaction reaction. By controllable tailoring in the morphology and strain induced by terminations, Pt (111) QDs with a sub-nanoscale size of 1.15 nm are grown as 0D/1D heterostructure to overcome the restrictions of employing reduction gas and high annealing temperature. The catalyst exhibits a low overpotential of 33.3 mV for acidic solution, while 65.1 mV for alkaline solution at a specific current density of 10 mA cm-2 . This study not only paves a scalable pathway to developing cost-efficient catalysts in moderate conditions, but also demonstrates an effective surface modulation strategy for 0D/1D heterostructures.

8.
Adv Mater ; 33(32): e2101263, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34176170

RESUMEN

2D hybrid perovskites are very attractive for optoelectronic applications because of their numerous exceptional properties. The emerging 2D perovskite ferroelectrics, in which are the coupling of spontaneous polarization and piezoelectric effects, as well as photoexcitation and semiconductor behaviors, have great appeal in the field of piezo-phototronics that enable to effectively improve the performance of optoelectronic devices via modulating the electro-optical processes. However, current studies on 2D perovskite ferroelectrics focus on bulk ceramics that cannot endure irregular mechanical deformation and limit their application in flexible optoelectronics and piezo-phototronics. Herein, we synthesize ferroelectric EA4 Pb3 Br10 single-crystalline thin-films (SCFs) for integration into flexible photodetectors. The in-plane multiaxial ferroelectricity is evident within the EA4 Pb3 Br10 SCFs through systematic characterizations. Flexible photodetectors based on EA4 Pb3 Br10 SCFs are achieved with an impressive photodetection performance. More importantly, optoelectronic EA4 Pb3 Br10 SCFs incorporated with in-plane ferroelectric polarization and effective piezoelectric coefficient show great promise for the observation of piezo-phototronic effect, which is capable of greatly enhancing the photodetector performance. Under external strains, the responsivity of the flexible photodetectors can be modulated by piezo-phototronic effect with a remarkable enhancement up to 284%. Our findings shed light on the piezo-phototronic devices and offer a promising avenue to broaden functionalities of hybrid perovskite ferroelectrics.

9.
Adv Sci (Weinh) ; 7(10): 1903680, 2020 May.
Artículo en Inglés | MEDLINE | ID: mdl-32440484

RESUMEN

Owing to their high robustness and conductivity, 2D transition metal carbides and nitrides known as MXenes are considered as a promising material class for electrochemical catalysis, energy conversion, and storage applications. Nevertheless, conventional hazardous fluoride-based synthesis routes and the intense intralayer bonding restrict the development of MXenes. Herein, a fluoride-free, facile, and rapid method for synthesizing self-assembled 1D architecture from an MXene-based compound is reported. The MXene nanowire (NW) not only provides a robust connection to the flexible substrate but also effectively increases the electrochemically active surface area. The kinetics-favorable structure yields a boosted performance for the hydrogen/oxygen evolution reaction and the intake of the zinc ion. The 1D NW based on MXene compound maintains high stability in a quite low overpotential of 236 mV for 24 h without detachment from the substrate and manifests an exceptional high-power density of 420 W kg-1 over 150 cycles as a flexible aqueous zinc ion battery. This work paves a novel and non-toxic synthesis method for the 1D nanofiber structure from MXene composition and demonstrates its multifunctional applications for energy conversion and storage.

10.
Nano Lett ; 20(4): 2747-2755, 2020 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-32186387

RESUMEN

Hybrid perovskite single-crystalline thin films are promising for making high-performance perovskite optoelectronic devices due to their superior physical properties. However, it is still challenging to incorporate them into multilayer devices because of their on-substrate growth. Here, a wet transfer method is used in transferring perovskite single-crystalline films perfectly onto various target substrates. More importantly, large millimeter-scaled single-crystalline films can be obtained via a diffusion-facilitated space-confined growth method as thin as a few hundred nanometers, which are capable of sustaining excellent crystalline quality and morphology after the transferring process. The availability of these crystalline films offers us a convenient route to further investigate their intrinsic properties of hybrid perovskites. We also demonstrate that the wet transfer method can be used for scalable fabrication of perovskite single-crystalline film-based photodetectors exhibiting a remarkable photoresponsivity. It is expected that this transferring strategy would promise broad applications of perovskite single-crystalline films for more complex perovskite devices.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA