Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(4): 801-809, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38334390

RESUMEN

OBJECTIVES: To investigate the genomic diversity and ß-lactam susceptibilities of Enterococcus faecalis collected from patients with infective endocarditis (IE). METHODS: We collected 60 contemporary E. faecalis isolates from definite or probable IE cases identified between 2018 and 2021 at the University of Pittsburgh Medical Center. We used whole-genome sequencing to study bacterial genomic diversity and employed antibiotic checkerboard assays and a one-compartment pharmacokinetic-pharmacodynamic (PK/PD) model to investigate bacterial susceptibility to ampicillin and ceftriaxone both alone and in combination. RESULTS: Genetically diverse E. faecalis were collected, however, isolates belonging to two STs, ST6 and ST179, were collected from 21/60 (35%) IE patients. All ST6 isolates encoded a previously described mutation upstream of penicillin-binding protein 4 (pbp4) that is associated with pbp4 overexpression. ST6 isolates had higher ceftriaxone MICs and higher fractional inhibitory concentration index values for ampicillin and ceftriaxone (AC) compared to other isolates, suggesting diminished in vitro AC synergy against this lineage. Introduction of the pbp4 upstream mutation found among ST6 isolates caused increased ceftriaxone resistance in a laboratory E. faecalis isolate. PK/PD testing showed that a representative ST6 isolate exhibited attenuated efficacy of AC combination therapy at humanized antibiotic exposures. CONCLUSIONS: We find evidence for diminished in vitro AC activity among a subset of E. faecalis IE isolates with increased pbp4 expression. These findings suggest that alternate antibiotic combinations against diverse contemporary E. faecalis IE isolates should be evaluated.


Asunto(s)
Endocarditis Bacteriana , Endocarditis , Infecciones por Bacterias Grampositivas , Humanos , Ceftriaxona/farmacología , Ceftriaxona/uso terapéutico , Enterococcus faecalis , Ampicilina/farmacología , Ampicilina/uso terapéutico , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Endocarditis Bacteriana/tratamiento farmacológico , Endocarditis Bacteriana/microbiología , Endocarditis/tratamiento farmacológico , Pruebas de Sensibilidad Microbiana , Infecciones por Bacterias Grampositivas/tratamiento farmacológico , Infecciones por Bacterias Grampositivas/microbiología , Quimioterapia Combinada
2.
Antimicrob Agents Chemother ; 68(3): e0125823, 2024 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-38289078

RESUMEN

The activity of a novel ß-lactamase inhibitor combination, sulbactam-durlobactam (SUL-DUR), was tested against 87 colistin-resistant and/or cefiderocol-non-susceptible carbapenem-resistant Acinetobacter baumannii clinical isolates collected from U.S. hospitals between 2017 and 2019. Among them, 89% and 97% were susceptible to SUL-DUR and imipenem plus SUL-DUR, with MIC50/MIC90 values of 2 µg/mL/8 µg/mL and 1 µg/mL/4 µg/mL, respectively. The presence of amino acid substitutions in penicillin-binding protein 3, including previously reported A515V or T526S, was associated with SUL-DUR non-susceptibility.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Compuestos de Azabiciclo , Humanos , Colistina/farmacología , Antibacterianos/farmacología , Cefiderocol , Infecciones por Acinetobacter/tratamiento farmacológico , Sulbactam/farmacología , Imipenem/farmacología , Hospitales , Pruebas de Sensibilidad Microbiana , Combinación de Medicamentos
3.
J Infect Dis ; 2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38271564

RESUMEN

BACKGROUND: Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections are associated with high mortality. We studied clinical bloodstream KPC-Kp isolates to investigate mechanisms of resistance to complement, a key host defense against bloodstream infection. METHODS: We tested growth of KPC-Kp isolates in human serum. In serial isolates from a single patient, we performed whole genome sequencing and tested for complement resistance and binding by mixing study, direct ELISA, flow cytometry, and electron microscopy. We utilized an isogenic deletion mutant in phagocytosis assays and an acute lung infection model. RESULTS: We found serum resistance in 16 of 59 (27%) KPC-Kp clinical bloodstream isolates. In five genetically-related bloodstream isolates from a single patient, we noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ. Disruption of wcaJ was associated with decreased polysaccharide capsule, resistance to complement-mediated killing, and surprisingly, increased binding of complement proteins. Furthermore, an isogenic wcaJ deletion mutant exhibited increased opsono-phagocytosis in vitro and impaired in vivo control in the lung after airspace macrophage depletion in mice. CONCLUSIONS: Loss of function in wcaJ led to increased complement resistance, complement binding, and opsono-phagocytosis, which may promote KPC-Kp persistence by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

4.
Clin Infect Dis ; 78(2): 248-258, 2024 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-37738153

RESUMEN

BACKGROUND: Carbapenem-resistant Acinetobacter baumannii (CRAb) is 1 of the most problematic antimicrobial-resistant bacteria. We sought to elucidate the international epidemiology and clinical impact of CRAb. METHODS: In a prospective observational cohort study, 842 hospitalized patients with a clinical CRAb culture were enrolled at 46 hospitals in five global regions between 2017 and 2019. The primary outcome was all-cause mortality at 30 days from the index culture. The strains underwent whole-genome analysis. RESULTS: Of 842 cases, 536 (64%) represented infection. By 30 days, 128 (24%) of the infected patients died, ranging from 1 (6%) of 18 in Australia-Singapore to 54 (25%) of 216 in the United States and 24 (49%) of 49 in South-Central America, whereas 42 (14%) of non-infected patients died. Bacteremia was associated with a higher risk of death compared with other types of infection (40 [42%] of 96 vs 88 [20%] of 440). In a multivariable logistic regression analysis, bloodstream infection and higher age-adjusted Charlson comorbidity index were independently associated with 30-day mortality. Clonal group 2 (CG2) strains predominated except in South-Central America, ranging from 216 (59%) of 369 in the United States to 282 (97%) of 291 in China. Acquired carbapenemase genes were carried by 769 (91%) of the 842 isolates. CG2 strains were significantly associated with higher levels of meropenem resistance, yet non-CG2 cases were over-represented among the deaths compared with CG2 cases. CONCLUSIONS: CRAb infection types and clinical outcomes differed significantly across regions. Although CG2 strains remained predominant, non-CG2 strains were associated with higher mortality. Clinical Trials Registration. NCT03646227.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Acinetobacter baumannii/genética , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Estudios Prospectivos , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Infecciones por Acinetobacter/microbiología , beta-Lactamasas/genética , Proteínas Bacterianas/genética , Antibacterianos/farmacología , Antibacterianos/uso terapéutico
5.
bioRxiv ; 2023 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-37398264

RESUMEN

Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC-Kp) bloodstream infections rarely overwhelm the host but are associated with high mortality. The complement system is a key host defense against bloodstream infection. However, there are varying reports of serum resistance among KPC-Kp isolates. We assessed growth of 59 KPC-Kp clinical isolates in human serum and found increased resistance in 16/59 (27%). We identified five genetically-related bloodstream isolates with varying serum resistance profiles collected from a single patient during an extended hospitalization marked by recurrent KPC-Kp bloodstream infections. We noted a loss-of-function mutation in the capsule biosynthesis gene, wcaJ, that emerged during infection was associated with decreased polysaccharide capsule content, and resistance to complement-mediated killing. Surprisingly, disruption of wcaJ increased deposition of complement proteins on the microbial surface compared to the wild-type strain and led to increased complement-mediated opsono-phagocytosis in human whole blood. Disabling opsono-phagocytosis in the airspaces of mice impaired in vivo control of the wcaJ loss-of-function mutant in an acute lung infection model. These findings describe the rise of a capsular mutation that promotes KPC-Kp persistence within the host by enabling co-existence of increased bloodstream fitness and reduced tissue virulence.

6.
J Antimicrob Chemother ; 78(4): 1034-1040, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36869724

RESUMEN

OBJECTIVES: We evaluated the clinical characteristics and outcomes of patients with COVID-19 who received three-drug combination regimens for treatment of carbapenem-resistant Acinetobacter baumannii (CRAB) infections during a single-centre outbreak. Our objective was to describe the clinical outcomes and molecular characteristics and in vitro synergy of antibiotics against CRAB isolates. MATERIALS AND METHODS: Patients with severe COVID-19 admitted between April and July 2020 with CRAB infections were retrospectively evaluated. Clinical success was defined as resolution of signs/symptoms of infection without need for additional antibiotics. Representative isolates underwent whole-genome sequencing (WGS) and in vitro synergy of two- or three-drug combinations was assessed by checkerboard and time-kill assays, respectively. RESULTS: Eighteen patients with CRAB pneumonia or bacteraemia were included. Treatment regimens included high-dose ampicillin-sulbactam, meropenem, plus polymyxin B (SUL/MEM/PMB; 72%), SUL/PMB plus minocycline (MIN; 17%) or other combinations (12%). Clinical resolution was achieved in 50% of patients and 30-day mortality was 22% (4/18). Seven patients had recurrent infections, during which further antimicrobial resistance to SUL or PMB was not evident. PMB/SUL was the most active two-drug combination by checkerboard. Paired isolates collected before and after treatment with SUL/MEM/PMB did not demonstrate new gene mutations or differences in the activity of two- or three-drug combinations. CONCLUSIONS: Use of three-drug regimens for severe CRAB infections among COVID-19 resulted in high rates of clinical response and low mortality relative to previous studies. The emergence of further antibiotic resistance was not detected phenotypically or through WGS analysis. Additional studies are needed to elucidate preferred antibiotic combinations linked to the molecular characteristics of infecting strains.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , COVID-19 , Humanos , Carbapenémicos/farmacología , Carbapenémicos/uso terapéutico , Estudios Retrospectivos , Infecciones por Acinetobacter/tratamiento farmacológico , Sinergismo Farmacológico , Antibacterianos/uso terapéutico , Combinación de Medicamentos , Acinetobacter baumannii/genética , Pruebas de Sensibilidad Microbiana
7.
Clin Infect Dis ; 76(3): e1261-e1265, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35974429

RESUMEN

We report on 11 critically ill burn patients treated with cefiderocol for carbapenem-resistant Acinetobacter baumannii infections. Clinical success was achieved in 36% and complicated by treatment-emergent resistance and interpatient transmission of cefiderocol-resistant A. baumannii. Resistant isolates harbored disrupted pirA and piuA genes that were not disrupted among susceptible isolates.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Acinetobacter baumannii/genética , Farmacorresistencia Bacteriana Múltiple/genética , Pruebas de Sensibilidad Microbiana , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/epidemiología , Brotes de Enfermedades , Unidades de Cuidados Intensivos , Cefiderocol
8.
Microb Genom ; 8(9)2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-36169644

RESUMEN

Carbapenem-resistant Enterobacterales pose an urgent threat to human health worldwide. Klebsiella pneumoniae sequence type (ST) 14, initially identified in the Middle East and South-Asia and co-harbouring the carbapenemase genes bla OXA-232 and bla NDM-1, is now emerging globally. One such strain was detected in the USA in 2013 from a patient initially treated in India that also carried armA, a 16S rRNA methyltransferase that confers resistance to all clinically relevant aminoglycosides. Genetic and phenotypic changes were observed in 14 serial isolates collected from this chronically infected patient. The index isolate carried five plasmids, including an IncFIB-IncHI1B (harbouring armA and bla NDM-1), an IncFIA (bla CTX-M-15) and a ColE-like (bla OXA-232), and was extensively resistant to antibiotics. Four years later, a subsequent isolate had accumulated 34 variants, including a loss-of-function mutation in romA, resulting in tigecycline non-susceptibility. Importantly, this isolate now only carried two plasmids, including a large mosaic molecule made of fragments, all harbouring distinct toxin-antitoxin systems, from three of the canonical plasmids. Of the original acquired antibiotic resistance genes, this isolate only retained bla CTX-M-15, and as a result susceptibility to the carbapenems and amikacin was restored. Long-read sequencing of a subset of five representative isolates, collected between 2013 and 2017, allowed for the elucidation of the complex plasmid patterns and revealed the role of IS26-mediated plasmid reshuffling in the evolution of this clone. Such investigations of the mechanisms underlying plasmid stability, together with global and local surveillance programmes, are key to a better understanding of plasmid host range and dissemination.


Asunto(s)
Klebsiella pneumoniae , Sistemas Toxina-Antitoxina , Amicacina , Antibacterianos/farmacología , Carbapenémicos , Humanos , Klebsiella pneumoniae/genética , Metiltransferasas/genética , Pruebas de Sensibilidad Microbiana , Infección Persistente , Plásmidos/genética , ARN Ribosómico 16S/genética , Tigeciclina , beta-Lactamasas/genética
9.
Phage (New Rochelle) ; 3(1): 50-58, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36147219

RESUMEN

Background: Enterobacter spp. are opportunistic pathogens that cause nosocomial infections. Bacteriophages could be used to treat antibiotic-resistant Enterobacter infections. Materials and Methods: We used 10 genetically diverse clinical Enterobacter spp. isolates to identify lytic bacteriophages in hospital and municipal wastewater. Comparative genomics was performed on host bacterial isolates and isolated phages. Activity of each phage against all 10 host isolates was determined. We also tested phage activity against paired isolates from two patients who developed ceftazidime-avibactam resistance. Results: Bacteria belonged to three Enterobacter species and Klebsiella aerogenes. We isolated 12 bacteriophages, most of which belonged to the Myoviridae and Autographiviridae families. Most phages were able to lyse multiple bacterial isolates, and many lysed isolates of different species. Ceftazidime-avibactam-resistant isolates were still phage susceptible, and one isolate showed increased susceptibility compared with the parent isolate. Conclusion: The phages we isolated expand the diversity of Enterobacter-targeting phages, and could be useful for treating antibiotic-resistant Enterobacter infections.

10.
iScience ; 25(6): 104372, 2022 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-35620437

RESUMEN

Pseudomonas aeruginosa infections can be difficult to treat and new therapeutics are needed. Bacteriophage therapy is a promising alternative to traditional antibiotics, but large numbers of isolated and characterized phages are lacking. We collected 23 diverse P. aeruginosa isolates from people with cystic fibrosis (CF) and clinical infections, and used them to screen and isolate over a dozen P. aeruginosa-targeting phages from hospital wastewater. Phages were characterized with genome sequencing, comparative genomics, and lytic activity screening against all 23 bacterial host isolates. We evolved bacterial mutants that were resistant to phage infection for four different phages, and used genome sequencing and functional analysis to study them further. We also tested phages for their ability to kill P. aeruginosa grown in biofilms in vitro and ex vivo on CF airway epithelial cells. Overall, this study demonstrates how systematic genomic and phenotypic characterization can be deployed to develop bacteriophages as precision antibiotics.

11.
mBio ; 13(2): e0275921, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35311529

RESUMEN

Carbapenem-resistant Acinetobacter baumannii (CRAb) is a major cause of health care-associated infections. CRAb is typically multidrug resistant, and infection is difficult to treat. Despite the urgent threat that CRAb poses, few systematic studies of CRAb clinical and molecular epidemiology have been conducted. The Study Network of Acinetobacter as a Carbapenem-Resistant Pathogen (SNAP) is designed to investigate the clinical characteristics and contemporary population structure of CRAb circulating in U.S. hospital systems using whole-genome sequencing (WGS). Analysis of the initial 120 SNAP patients from four U.S. centers revealed that CRAb remains a significant threat to hospitalized patients, affecting the most vulnerable patients and resulting in 24% all-cause 30-day mortality. The majority of currently circulating isolates belonged to ST2Pas, a part of clonal complex 2 (CC2), which is the dominant drug-resistant lineage in the United States and Europe. We identified three distinct sublineages within CC2, which differed in their antibiotic resistance phenotypes and geographic distribution. Most concerning, colistin resistance (38%) and cefiderocol resistance (10%) were common within CC2 sublineage C (CC2C), where the majority of isolates belonged to ST2Pas/ST281Ox. Additionally, we identified ST499Pas as the most common non-CC2 lineage in our study. Our findings suggest a shift within the CRAb population in the United States during the past 10 years and emphasize the importance of real-time surveillance and molecular epidemiology in studying CRAb dissemination and clinical impact. IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAb) constitutes a major threat to public health. To elucidate the molecular and clinical epidemiology of CRAb in the United States, clinical CRAb isolates were collected along with data on patient characteristics and outcomes, and bacterial isolates underwent whole-genome sequencing and antibiotic susceptibility phenotyping. Key findings included emergence of new sublineages within the globally predominant clonal complex 2 (CC2), increased colistin and cefiderocol resistance within one of the CC2 sublineages, and emergence of ST499Pas as the dominant non-CC2 CRAb lineage in U.S. hospitals.


Asunto(s)
Infecciones por Acinetobacter , Acinetobacter baumannii , Infecciones por Acinetobacter/microbiología , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Carbapenémicos/farmacología , Colistina , Farmacorresistencia Bacteriana , Hospitales , Humanos , Proteína 1 Similar al Receptor de Interleucina-1 , Pruebas de Sensibilidad Microbiana , Estados Unidos/epidemiología , beta-Lactamasas/genética
12.
Microbiol Spectr ; 9(3): e0177921, 2021 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-34756080

RESUMEN

By serially exposing an NDM-producing Klebsiella pneumoniae clinical strain to cefiderocol, we obtained a mutant with cefiderocol MIC of >128 µg/ml. The mutant contained an early stop codon in the iron transporter gene cirA, and its complementation fully restored susceptibility. The cirA-deficient mutant was competed out by the parental strain in vitro, suggesting reduced fitness. IMPORTANCE Cefiderocol, a newly approved cephalosporin agent with an extensive spectrum of activity against Gram-negative bacteria, is a siderophore cephalosporin that utilizes iron transporters to access the bacterial periplasm. Loss of functional CirA, an iron transporter, has been associated with cefiderocol resistance. Here, we show that such genetic change can be selected under selective pressure and cause high-level cefiderocol resistance, but with a high fitness cost. Whether these resistant mutants can survive beyond selective pressure will inform stewardship of this agent in the clinic.


Asunto(s)
Proteínas de Transporte de Catión/genética , Cefalosporinas/farmacología , Farmacorresistencia Bacteriana Múltiple/genética , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Antibacterianos/farmacología , Codón sin Sentido/genética , Mutación del Sistema de Lectura/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Infecciones por Klebsiella/tratamiento farmacológico , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/metabolismo , Pruebas de Sensibilidad Microbiana , Sideróforos/farmacología , Cefiderocol
13.
Antimicrob Agents Chemother ; 65(7): e0015021, 2021 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-33972237

RESUMEN

KPC-82 is a KPC-2 variant identified in a carbapenem-nonsusceptible Citrobacter koseri that confers high-level resistance to ceftazidime-avibactam. Genomic analysis revealed that blaKPC-82 is carried by a chromosomally integrated Tn4401 transposon (disrupting porin gene phoE) and evolved by a 6-nucleotide tandem repeat duplication causing a two-amino-acid insertion (Ser-Asp) within the Ala267-Ser275 loop. Similar to related KPC variants, KPC-82 showed decreased carbapenemase activity when expressed in a heterologous background and remained susceptible to carbapenem/ß-lactamase inhibitor combinations.


Asunto(s)
Carbapenémicos , Citrobacter koseri , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Proteínas Bacterianas/genética , Carbapenémicos/farmacología , Ceftazidima/farmacología , Combinación de Medicamentos , Klebsiella pneumoniae , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética
14.
Emerg Infect Dis ; 26(11): 2746-2750, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33079055

RESUMEN

We describe an outbreak caused by Serratia marcescens carrying blaKPC-3 that was sourced to a long-term care facility in Florida, USA. Whole-genome sequencing and plasmid profiling showed involvement of 3 clonal lineages of S. marcescens and 2 blaKPC-3-carrying plasmids. Determining the resistance mechanism is critical for timely implementation of infection control measures.


Asunto(s)
Brotes de Enfermedades , Infecciones por Serratia/epidemiología , Serratia marcescens , Adulto , Anciano , Anciano de 80 o más Años , Antibacterianos/farmacología , Proteínas Bacterianas/genética , Femenino , Florida/epidemiología , Humanos , Cuidados a Largo Plazo , Masculino , Persona de Mediana Edad , Casas de Salud , Plásmidos/genética , Serratia marcescens/genética , Adulto Joven , beta-Lactamasas/genética
15.
Clin Infect Dis ; 71(10): 2713-2716, 2020 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-32236408

RESUMEN

We report 2 independent patients from whom carbapenem and ceftazidime-avibactam-resistant Enterobacter cloacae complex strains were identified. The ceftazidime-avibactam resistance was attributed to a 2-amino acid deletion in the R2 loop of AmpC ß-lactamase, which concurrently caused resistance to cefepime and reduced susceptibility to cefiderocol, a novel siderophore cephalosporin.


Asunto(s)
Cefalosporinas , Enterobacter cloacae , Antibacterianos/farmacología , Compuestos de Azabiciclo , Proteínas Bacterianas/genética , Cefepima , Ceftazidima/farmacología , Cefalosporinas/farmacología , Combinación de Medicamentos , Enterobacter cloacae/genética , Humanos , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Cefiderocol
16.
Artículo en Inglés | MEDLINE | ID: mdl-32284381

RESUMEN

Ceftazidime-avibactam and cefiderocol are two of the latest generation ß-lactam agents that possess expanded activity against highly drug-resistant bacteria, including carbapenem-resistant Enterobacterales Here, we show that structural changes in AmpC ß-lactamases can confer reduced susceptibility to both agents. A multidrug-resistant Enterobacter cloacae clinical strain (Ent385) was found to be resistant to ceftazidime-avibactam and cefiderocol without prior exposure to either agent. The AmpC ß-lactamase of Ent385 (AmpCEnt385) contained an alanine-proline deletion at positions 294 and 295 (A294_P295del) in the R2 loop. AmpCEnt385 conferred reduced susceptibility to ceftazidime-avibactam and cefiderocol when cloned into Escherichia coli TOP10. Purified AmpCEnt385 showed increased hydrolysis of ceftazidime and cefiderocol compared to AmpCEnt385Rev, in which the deletion was reverted. Comparisons of crystal structures of AmpCEnt385 and AmpCP99, the canonical AmpC of E. cloacae complex, revealed that the two-residue deletion in AmpCEnt385 induced drastic structural changes of the H-9 and H-10 helices and the R2 loop, which accounted for the increased hydrolysis of ceftazidime and cefiderocol. The potential for a single mutation in ampC to confer reduced susceptibility to both ceftazidime-avibactam and cefiderocol requires close monitoring.


Asunto(s)
Ceftazidima , Enterobacter cloacae , Antibacterianos/farmacología , Compuestos de Azabiciclo/farmacología , Ceftazidima/farmacología , Cefalosporinas , Combinación de Medicamentos , Enterobacter cloacae/genética , Pruebas de Sensibilidad Microbiana , beta-Lactamasas/genética , Cefiderocol
17.
Artículo en Inglés | MEDLINE | ID: mdl-31636064

RESUMEN

OXA-232 is an OXA-48-group class D ß-lactamase that hydrolyzes expanded-spectrum cephalosporins and carbapenems at low levels. Clinical strains producing OXA-232 are sometimes susceptible to carbapenems, making it difficult to identify them in the clinical microbiology laboratory. We describe the development of carbapenem resistance in sequential clinical isolates of Raoultella ornithinolytica carrying blaOXA-232 in a hospitalized patient, where the ertapenem MIC increased from 0.5 µg/ml to 512 µg/ml and the meropenem MIC increased from 0.125 µg/ml to 32 µg/ml during the course of ertapenem therapy. Whole-genome sequencing (WGS) analysis identified loss-of-function mutations in ompC and ompF in carbapenem-resistant isolates that were not present in the initial carbapenem-susceptible isolate. Complementation of a carbapenem-resistant isolate with an intact ompF gene resulted in 16- to 32-fold reductions in carbapenem MICs, whereas complementation with intact ompC resulted in a 2-fold reduction in carbapenem MICs. Additionally, blaOXA-232 expression increased 2.9-fold in a carbapenem-resistant isolate. Rapid development of high-level carbapenem resistance in initially carbapenem-susceptible OXA-232-producing R. ornithinolytica under selective pressure from carbapenem therapy highlights the diagnostic challenges in detecting Enterobacteriaceae strains producing this inefficient carbapenemase.


Asunto(s)
Proteínas Bacterianas/biosíntesis , Enterobacteriaceae Resistentes a los Carbapenémicos/efectos de los fármacos , Enterobacteriaceae Resistentes a los Carbapenémicos/enzimología , Carbapenémicos/farmacología , Enterobacteriaceae/efectos de los fármacos , Enterobacteriaceae/enzimología , Ertapenem/farmacología , Resistencia betalactámica , beta-Lactamasas/biosíntesis , Proteínas Bacterianas/genética , Enterobacteriaceae Resistentes a los Carbapenémicos/genética , Enterobacteriaceae/genética , Infecciones por Enterobacteriaceae/tratamiento farmacológico , Infecciones por Enterobacteriaceae/microbiología , Genes Bacterianos , Humanos , Masculino , Mutación , Porinas/genética , Secuenciación Completa del Genoma , Resistencia betalactámica/genética , beta-Lactamasas/genética
18.
J Antimicrob Chemother ; 74(8): 2203-2208, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31127290

RESUMEN

BACKGROUND: OXA-2 is a class D ß-lactamase that confers resistance to penicillins, as well as narrow-spectrum cephalosporins. OXA-2 was recently reported to also possess carbapenem-hydrolysing activity. Here, we describe a KPC-2-encoding Klebsiella pneumoniae isolate that demonstrated reduced susceptibility to ceftazidime and ertapenem due to production of OXA-2. OBJECTIVES: To elucidate the role of OXA-2 production in reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 clinical isolate. METHODS: MICs were determined by the agar dilution method. WGS was conducted to identify and compare resistance genes between isolates. Expression of KPC-2 was quantified by quantitative RT-PCR and immunoblotting. OXA-2 was expressed in Escherichia coli TOP10, as well as in K. pneumoniae ATCC 13883, to define the relative contribution of OXA-2 in ß-lactam resistance. Kinetic studies were conducted using purified OXA-2 enzyme. RESULTS: K. pneumoniae 1761 belonged to ST258 and carried both blaKPC-2 and blaOXA-2. However, expression of blaKPC-2 was substantially reduced due to an IS1294 insertion in the promoter region. K. pneumoniae 1761, K. pneumoniae ATCC 13883 and E. coli TOP10 carrying blaOXA-2-harbouring plasmids showed reduced susceptibility to ertapenem and ceftazidime, but meropenem, imipenem and cefepime were unaffected. blaOXA-2 was carried on a 2910 bp partial class 1 integron containing aacA4-blaOXA-2-qacEΔ1-sul1 on an IncA/C2 plasmid, which was not present in the earlier ST258 isolates possessing blaKPC-2 with intact promoters. Hydrolysis of ertapenem by OXA-2 was confirmed using purified enzyme. CONCLUSIONS: Production of OXA-2 was associated with reduced ceftazidime and ertapenem susceptibility in a K. pneumoniae ST258 isolate.


Asunto(s)
Antibacterianos/farmacología , Ceftazidima/farmacología , Ertapenem/farmacología , Klebsiella pneumoniae/efectos de los fármacos , Klebsiella pneumoniae/genética , beta-Lactamasas/genética , Farmacorresistencia Bacteriana/genética , Humanos , Cinética , Infecciones por Klebsiella/microbiología , Klebsiella pneumoniae/enzimología , Pruebas de Sensibilidad Microbiana
19.
Med Mycol Case Rep ; 24: 54-57, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-31032179

RESUMEN

Chronic granulomatous disease (CGD) is a heterogeneous condition due to defects in NADPH oxidase characterized by granuloma formation and increased susceptibility to invasive infections, in particular moulds. The use of broad-spectrum, mould-active antifungal prophylaxis has improved mortality. However rare resistant moulds have emerged as important pathogens. Diagnosis of these rare fungi requires molecular techniques, and treatment data are limited. Herein, we present a case of with disseminated Rasamsonia infection involving the heart.

20.
Expert Rev Anti Infect Ther ; 16(2): 89-110, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29310479

RESUMEN

INTRODUCTION: Non-fermenting Gram-negative bacilli are at the center of the antimicrobial resistance epidemic. Acinetobacter baumannii and Pseudomonas aeruginosa are both designated with a threat level to human health of 'serious' by the Centers for Disease Control and Prevention. Two other major non-fermenting Gram-negative bacilli, Stenotrophomonas maltophilia and Burkholderia cepacia complex, while not as prevalent, have devastating effects on vulnerable populations, such as those with cystic fibrosis, as well as immunosuppressed or hospitalized patients. Areas covered: In this review, we summarize the clinical impact, presentations, and mechanisms of resistance of these four major groups of non-fermenting Gram-negative bacilli. We also describe available and promising novel therapeutic options and strategies, particularly combination antibiotic strategies, with a focus on multidrug resistant variants. Expert commentary: We finally advocate for a therapeutic approach that incorporates in vitro antibiotic susceptibility testing with molecular and genotypic characterization of mechanisms of resistance, as well as pharmacokinetics and pharmacodynamics (PK/PD) parameters. The goal is to begin to formulate a precision medicine approach to antimicrobial therapy: a clinical-decision making model that integrates bacterial phenotype, genotype and patient's PK/PD to arrive at rationally-optimized combination antibiotic chemotherapy regimens tailored to individual clinical scenarios.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/efectos de los fármacos , Infecciones por Bacterias Gramnegativas/tratamiento farmacológico , Antibacterianos/farmacocinética , Infección Hospitalaria/tratamiento farmacológico , Infección Hospitalaria/epidemiología , Infección Hospitalaria/microbiología , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/aislamiento & purificación , Infecciones por Bacterias Gramnegativas/epidemiología , Infecciones por Bacterias Gramnegativas/microbiología , Humanos , Terapia Molecular Dirigida
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA