RESUMEN
Sputtering is an effective technique for producing ultrathin films with diverse applications. The review begins by providing an in-depth overview of the background, introducing the early development of sputtering and its principles. Consequently, progress in advancements made in recent decades highlights the renaissance of sputtering as a powerful technology for creating thin films with varied compositions, structures, and properties. For the first time, we have discussed a thorough overview of several sputtered thin film materials based on metal and metal oxide, metal nitride, alloys, carbon, and ceramic-based thin film along with their properties and their applicability in various fields. We further delve into the applications of sputter-coated thin films, specifically emphasizing their relevance in environmental sustainability, energy and electronics, and biomedical fields. We critically examine the recent advancements in developing sputter-coated catalysts for eliminating water pollutants andhydrogen generation. Additionally, the review sheds light on advantages, shortcomings, and future directions for developing sputter-coated thin films utilized in biodegradable metals and alloys with enhanced corrosion resistance and biocompatibility. This review is a comprehensive integration of recent literature, covering diverse sputtering thin film applications. We delve deeply into various material types and emphasize critical analysis of recent advancements, particularly in environmental, energy, and biomedical fields. By offering insights into both advancements and limitations, the review provides a nuanced understanding essential for practical utilization.
RESUMEN
The objective of this research is to create a highly effective approach for eliminating pollutants from the environment through the process of photocatalytic degradation. The study centers around the production of composites consisting of CaCu3Ti4O12 (CCTO) and reduced graphene oxide (rGO) using an ultrasonic-assisted method, with a focus on their capacity to degrade ibuprofen (IBF) and ciprofloxacin (CIP) via photodegradation. The impact of rGO on the structure, morphology, and optical properties of CCTO was inspected using XRD, FTIR, Raman, FESEM, XPS, BET, and UV-Vis. Morphology characterization showed that rGO particles were dispersed within the CCTO matrix without any specific chemical interaction between CCTO and C in the rGO. The BET analysis revealed that with increasing the amount of rGO in the composite, the specific surface area significantly increased compared to the CCTO standalone. Besides, increasing rGO resulted in a reduction in the optical bandgap energy to around 2.09 eV, makes it highly promising photocatalyst for environmental applications. The photodegradation of IBF and CIP was monitored using visible light irradiation. The results revealed that both components were degraded above 97% after 60 min. The photocatalyst showed an excellent reusability performance with a slight decrease after five runs to 93% photodegradation efficiency.
Asunto(s)
Ciprofloxacina , Grafito , Ibuprofeno , Fotólisis , Ibuprofeno/química , Grafito/química , Ciprofloxacina/química , Catálisis , Contaminantes Químicos del Agua/químicaRESUMEN
Ynamides are N-alkyne compounds bearing an electron withdrawing group at the nitrogen atom. They offer unique pathways for the construction of versatile building blocks owing to their exceptional balance between reactivity and stability. Recently several studies have been reported that explore and illustrate the synthetic potential of ynamides and ynamide-derived advanced intermediates in cycloadditions with different reaction partners to yield heterocyclic cycloadducts of synthetic and pharmaceutical value. Cycloaddition reactions of ynamides are the facile and preferable routes for the construction of structural motifs having striking importance in synthetic, medicinal chemistry, and advanced materials. In this systematic review, we highlighted the recently reported novel transformations and synthetic applications that involved the cycloaddition reaction of ynamides. The scope along with the limitations of the transformations are discussed in detail.